The secret of shape

The secret of shape

I remember when I started my personal quest for the secret of shape; I was just a boy of 4 or 5, more than a generation ago. Bent above the kindergartner desk, during my first scary loneliness; or laying on the floor, at home, investigating those wonderful images of extinct creatures that kept relentlessly their mistery, as gods of an unreachable pantheon.

I have never ended this quest, even when I left my pencil, even when I became miserably sick, both in mind and body; and after all those years, through all this suffering and some sporadic sparkle of joy, I’ve finally realized that I have continuously pursued shape, whether it was the profile of a gear or the architecture of an enzyme; when I looked with interest at a woman, for the first time, or when I tried to understand a theorem, I have always unconsciously looked for this secret, for the lines that keep the true knowledge. Those lines that you have to find exactly, those tiny layers of graphite that you have to draw without mistakes, otherwise you will miss the truth.

And now that my organism can’t hold back youth anymore, now I know that all is ruled by the implacable secret of shape, from the gravitational field to the orbitals of atoms; I recognize that that lost child was searching for more than a well-crafted, proportionate figure: he was beginning his own quest for the truth.

201557_4351148853351_324060137_o.jpg

Mark Davis e il test immunitario universale

Mark Davis e il test immunitario universale

Versione in italiano di questo articolo in inglese. Traduzione a cura di Chiara Scarpellini

1. Introduzione

Queste sono solo alcune note raccolte dal discorso che Mark Davis ha pronunciato in occasione del Community Symposium tenutosi nell’agosto scorso (2017) a Stanford (video). Nei paragrafi 2, 3, 4 e 5 introdurrò alcune nozioni di base sui recettori delle cellule T (T cell receptors: TCR); il paragrafo 6, attraverso riferimenti  al video già menzionato e a tre articoli pubblicati da Davis et al. nel corso degli ultimi quattro anni, descrive una  nuova tecnologica sviluppata da Mark Davis e colleghi. Questi cenni preliminari dovrebbero auspicabilmente fornire i mezzi per comprendere a pieno la portata dei dati pilota presentati da Mark Davis a proposito dell’attività delle cellule T nella ME/CFS (paragrafo 7) e nella malattia di Lyme cronica (paragrafo 8), mostrando perché tale tecnologia prometta di divenire una sorta di test universale per qualsiasi tipo di infezione o patologia autoimmune, nota o sconosciuta.

2. Cellule T

I linfociti T sono una tipologia di leucociti (o globuli bianchi), vale a dire la componente cellulare del nostro sistema immunitario. La gran parte dei linfociti T in circolo è rappresentata da linfociti T helper (T helper cells: Th cells)  e da linfociti T citotossici (cytotoxic T lymphocytes: CTL). Mentre la funzione dei linfociti T helper è quella di regolare l’attività degli altri leucociti attraverso la produzione di un’ampia gamma di trasmettitori chimici (le citochine, cytokines), le CTL sono coinvolte direttamente nella soppressione delle cellule ospiti infette. I linfociti T appartengono al ramo cosiddetto adattivo del sistema immunitario, assieme alle cellule B (le fabbriche di anticorpi), e, in quanto tali, il loro compito è quello di garantire una difesa specifica, su misura, contro gli agenti patogeni: per contrastare uno specifico agente patogeno, il nostro sistema immunitario può schierare in campo non solo anticorpi specifici ma anche specifici linfociti T (Th cells e CTL). Il ramo innato del sistema immunitario, invece, (nel quale rientrano le cellule natural killer, i macrofagi, le cellule dendritiche, i mastociti…) è in grado di fornire soltanto una difesa aspecifica, una prima linea di risposta immunitaria.

3. Recettori dei linfociti T

I linfociti T sono in grado di andare alla ricerca di specifici patogeni grazie a una molecola espressa sopra la propria superficie, chiamata recettore del linfocita T (TCR). Nella figura 1 si può vedere una schematica rappresentazione del TCR e del meccanismo in virtù del quale il linfocita T riconosce il proprio target. Gli antigenti (proteine) degli agenti patogeni vengono indicati ai linfociti T da altre cellule del nostro corpo: vengono esposte sopra molecole chiamate Complesso Maggiore di Istocompatibilità (MHC), che si trova espresso sulla membrana esterna. Se un dato antigene mostra compatibilità con il TCR di uno specifico linfocita T, tale linfocita T si attiva e comincia a proliferare (espansione clonale, clonal expansion). Le due catene principali (α and β) sono assemblate combinando la trascrizione di segmenti di gene, ognuno dei quali ha copie multiple, leggermente diverse fra loro: in altre parole, i TCR vengono assemblati a partire da peptidi scelti a caso da un insieme di diverse alternative possibili. Questo comporta un repertorio di 10^15 diversi possibili TCR  (Mason DA 1998). Ogni linfocita T mostra un solo tipo di TCR.

Figure 1. Metà superiore. Le cellule Th e le CTL condividono lo stesso TCR: in entrambi i casi la molecola è il prodotto dell’assemblaggio di due peptidi (catena α e catena β), ma mentre il TCR delle Th cells (sulla destra) si trova espresso accanto alla molecola CD4, che lega con il MHC II, il TCR dei CTL è associato alla molecola CD8 (sulla sinistra), che è specifica per il MHC I. Le barre nere rappresentano quattro catene – un complesso chiamato CD3 – coinvolte nella trasmissione dei segnali (signaling) dal TCR al nucleo della cellula (by Paolo Maccallini). Metà inferiore. Un’efficace rappresentazione strutturale del TCR legato al complesso peptide-MHC (pMHC), tratto da Gonzàlez PA et al. 2013. In verde il peptide; in blu la catena β; in verde scuro la catena α. Le CDR (regioni determinanti di complementarietà, complementarity determining regions, in arancione) sono composte di quei residui delle catene α e β che legano direttamente il pMHC.

4. Cellule T helper 

Le cellule T helper sono programmate per riconoscere esclusivamente antigeni esposti dalle molecole MHC di seconda classe (II): questa classe di MHC viene espressa sulla membrana esterna di alcuni leucociti, principalmente le cellule dendritiche, le cellule B e i macrofagi (tutte assieme dette “cellule che presentano l’antigene”, antigen presenting cells: APC). Le molecole MHC II legano il TCR delle cellule T helper grazie al peptide CD4 (espresso unicamente dalle cellule T helper). L’antigene presentato dalle molecole MHC è un peptide lungo 13-17 amminoacidi (Rudensky, et al., 1991) (figura 2).

Figure 2. Il TCR espresso da una Th cell lega un epitopo esposto da un MHC II espresso sulla membrana plasmatica di una APC.  Vengono rappresentate anche le catene α e β del MHC II     (disegno di Paolo Maccallini).

5. Linfociti T citotossici 

I TCR espressi dai linfociti T citotossici (CTL) possono legare solo antigeni esposti dalle molecole MHC di prima classe (I), che si trovano nella membrana esterna di qualunque cellula del nostro corpo. La glicoproteina CD8 è la molecola che rende i TCR espressi dalle CTL specifici per il MHC I. Mentre gli antigeni esposti dalle APC appartengono a patogeni raccolti sul campo di battaglia di passate infezioni, i peptidi esposti dal MHC I di una specifica cellula appartengono a patogeni che hanno fatto ingresso nella cellula stessa, e pertanto costituiscono la prova di un’infezione intracellulare ancora in atto (figura 3). Nel momento in cui un CTL riconosce un antigene che combacia con il proprio TCR, il CTL iduce l’apoptosi (morte programmata) della cellula che mostra l’antigene. Gli antigeni esposti dal MHC I sono peptidi che vanno dagli 8 ai 10 amminoacidi (Stern, et al., 1994).MHC I.JPG

Figure 3. Una cellula infetta espone un antigene virale sul proprio MHC I. Il TCR di un CTL si lega a questo peptide ed invia un segnale interno diretto al suo proprio nucleo, il quale risponde attivando l’apoptosi (attraverso il rilascio di granzimi, ad esempio) della cellula infetta (disegno di Paolo Maccallini).   

6. Il test immunologico universale

Nel corso del suo discorso, Mark Davis illustra alcuni concetti base sul sistema immunitario, prima di passare a introdurre i nuovi, entusiasmanti dati riguardo alla ME/CFS e alla Lyme cronica (o post-treatment Lyme disease syndrome: PTLDS). Contestualmente, però, dedica alcuni minuti alla descrizione di un complesso nuovo test che teoricamente renderebbe possibile estrapolare tutte le informazioni contenute nel repertorio di TCR presenti – in un dato momento – nel sangue di un essere umano. Un test del genere – che chiamerei “test immunologico universale” – avrebbe la capacità di determinare se un paziente presenta un’infezione in corso (e, nel caso, indicare il patogeno coinvolto) oppure una malattia autoimmune (anche qui specificando la natura dell’autoantigene, ossia il tessuto attaccato dal sistema immunitario). A quanto mi è dato di comprendere, il test richiede tre passaggi, che elenco nelle sezioni seguenti.

6.1. Primo step: sequenziamento del TCR

Come già spiegato nel paragrafo 3, quando un linfocita T incontra un peptide a cui è compatibile, comincia a proliferare; pertanto, nel sangue di un paziente con infezione in corso (o con reazione contro il proprio organismo, cioè con reazione autoimmune) è possibile trovare molteplici copie di linfociti T che esprimono il medesimo TCR: a differenza dei controlli sani, nei quali circa il 10% delle CD8 totali è rappresentato da copie di pochi diverse linfociti T (figura 4, prima linea), nei pazienti affetti da Lyme incipiente –  un esempio di infezione attiva – o sclerosi multipla (MS) –  un esempio di malattia autoimmune – abbiamo una massiccia clonazione di alcune linee di CTL (figura 5, seconda e terza riga, rispettivamente). Il primo step del test immunologico universale starà allora nell’identificazione dell’esatta sequenza di TCR espressa dai linfociti T presenti nel sangue, come si legge in Han A et al. 2014, dove troviamo descritto il sistema per sequenziare i geni delle catene α e β di un dato linfocita T. Tale approccio permette di costruire grafici come quello in figura 4 e quindi permette di determinare se il paziente presenti in atto un’attività anomala dei linfociti T oppure no. Qualora si riscontri un fenomeno di espansione clonale, è legittimo ipotizzare che stia avendo luogo o un’infezione o una condizione autoimmune di qualche sorta.

Clonal expansion CD8
Figure 4. Ogni cerchio rappresenta un paziente. Nella prima riga vediamo quattro controlli sani, che non presentano affatto espansione clonale delle cellule CD8 (come nel primo paziente da sinistra) oppure la presentano in maniera assai moderata (come indicato dalle porzioni in blu, bianco e grigio). Nella seconda riga troviamo invece quattro pazienti con malattia di Lyme attiva (fase incipiente) e possiamo ben notare come ciascuno di loro, nessuno escluso, presenti espansione clonale di solo tre diverse T cells (porzioni in rosso, blu e arancione). Nella terza riga, infine, abbiamo quattro pazienti affetti da MS, le cui cellule CD8 sono per maggior parte rappresentate da cloni di una selezione ristretta di T cells.
Fonte: slide proposte da Mark Davis durante il Community Symposium.

6.2. Secondo step: raggruppamento dei TCR 

Mark Davis e colleghi hanno realizzato un software capace di identificare i TCR che condividono il medesimo antigene, sia in un singolo individuo che trasversalmente a un gruppo. L’algoritmo è stato denominato GLIPH (grouping of lymphocyte interaction by paratope hotspots) ed ha dato prova di poter raggruppare – per fare un esempio – i recettori  dei linfociti T CD4 di 22 soggetti con infezione da M. tuberculosis latente in 16 gruppi distinti, ognuno dei quali comprende TCR provenienti da almeno tre individui (Glanville J et al. 2017). Cinque di questi gruppi sono riportati nella figura 5. L’idea sottostante è che TCR che appartengono allo stesso raggruppamento reagiscano allo stesso complesso peptide-MHC (pMHC).

GLIPH
Figure 5.  Cinque gruppi di TCR provenienti da 22 diversi pazienti affetti da turbercolosi latente, raggruppati grazie al GLIPH. La prima colonna da sinistra riporta l’identificativo dei TCR; la seconda l’identificativo dei pazienti. Le CDR per le catene β e α si trovano, rispettivamente, sulla terza e sulla quinta colonna. Tratto da Glanville J et al. 2017.

6.3. Terzo step: ricerca degli epitopi

Come abbiamo visto, questa nuova tecnologia consente di rilevare se sia in atto un’espansione clonale di linfociti T sequenziando i TCR dal sangue periferico. Consente inoltre di raggruppare i TCR presenti in un singolo paziente o condivisi da più pazienti. Il passaggio successivo è quello di identificare a quale/i tipo/i di antigene ognuno di questi raggruppamenti reagisca. Infatti, se potessimo identificare degli antigeni comuni in un gruppo di pazienti dai sintomi comparabili nei quali si riscontri un’espansione clonale in atto e simili TCR, saremmo messi in grado di comprendere se il loro sistema immunitario stia attaccando un patogeno (e di identificare il patogeno) o se stia piuttosto attaccando un tessuto ospite e, qualora fosse questo il caso, di identificare il tessuto. Come già detto, il numero di possibili combinazioni per il materiale genetico dei TCR è calcolato attorno ai 10^15, ma il numero dei possibili epitopi di cellule Th è circa 20^15, che corrisponde a più di 10^19. Ciò implica che i TCR debbano essere in una qualche misura cross-reattivi se vogliono essere in grado di riconoscere tutti i possibili peptidi esposti dai MHC (Mason DA 1998). Il grado di tale cross-reattività e il meccanismo attraverso il quale viene ottenuta sono stati spiegati con esattezza da Mark Davis e colleghi in un recente articolo (Birnbaum ME et al. 2014), che ci fornisce il terzo step del test immunologico universale. Lo scopo di questa fase consiste nel prendere un dato TCR e trovare il repertorio dei suoi specifici antigeni (giova ripetere che, appunto, ogni TCR reagisce a più antigeni). Per comprendere come ciò sia possibile, guardiamo a uno degli esperimenti descritti nell’articolo più sopra citato. I ricercatori si sono concentrati su due TCR ben precisi (chiamati Ob.1A12 e Ob.2F3), clonati da un paziente con MS e noti per essere capaci di riconoscere i pepetidi 85-99 (figura 6) della proteina basica della mielina (MBP) esposti dall’ HLA-DR15. Hanno poi preparato un insieme di cellule di lievito che esprimono molecole HLA-DR15, ognuna caratterizzata da un diverso peptide formato da 14 amminoacidi, con amminoacidi fissi esclusivamente alle posizioni 1 e 4, dove il peptide è ancorato al MHC (figura 6, sinistra). Quando alla coltura di cellule di lievito  che esprimono complessi pMHC vengono aggiunte copie di Ob.1A12, queste legano solo con alcune di quelle e, come è possibile vedere dalla parte destra della figura 6, per ciascuna posizione degli epitopi legati dal Ob.1A12 esiste un amminoacido con maggior tasso di probabilità: ad esempio, l’epitopo Ob.1A12 tipico presenta preferibilmente alanina (A) in posizione -4, istidina (H) in posizione -3, arginina (R) in posizione -2, e così via. Da notare che istidina (H) in posizione 2 e fenilanina (F) in posizione 3 sono amminoacidi obbligatori per un epitopo di  Ob.1A12.

Ob. 1A12
Figure 6. Sulla sinistra: il peptide 85-99 della proteina basica della mielina (myelin basic protein, MPB) è risaputo essere un epitopo per il TCR Ob.1A12. In posizione 1 e 4 possiede due residui che gli consentono di legare con la molecola MHC. In posizione -2, -1, 2, 3 3 5 troviamo invece i residui che legano con il TCR. La seconda riga rappresenta l’epitopo generico della libreria peptidica utilizzata per identificare il grado di cross-reattività tra tutti i possibili epitopi di Ob.1A12. A destra: la probabilità di ciascun amminoacido per ciascuna posizione è rappresentata da sfumature di viola. Come potete vedere, l’istidina (H) in posizione 2 e la fenilalanina (F) in posizione 3 sono amminoacidi obbligatori affinché un epitopo sia reattivo con Ob.1A12. Da (Birnbaum ME et al 2014).

La tabella sulla destra della figura 6 rappresenta, infatti, una tabella di sostituzione (substitution matrix) di dimensioni 14×20, uno strumento impiegato per scansionare il database dei peptidi in modo da trovare, tra tutti i peptidi conosciuti espressi da creature viventi, tutti i possibili epitopi specifici per Ob.1A12. Le matrici di sostituzione vengono solitamente utilizzate nel cosiddetto allineamento di peptidi (peptide alignment), una tecnica che punta all’identificazione di similitudini tra peptidi. Tali matrici sono basate su considerazioni di tipo evoluzionistico (Dayhoff, et al., 1978) o sullo studio delle regioni conservate delle proteine (Henikoff, et al., 1992). Ma la ricerca degli epitopi specifici di un dato TCR richiede (come abbiamo visto per Ob.1A12) una matrice di sostituzione costruita ad hoc per quel TCR: ogni TCR richiede la propria matrice di sostituzione, ottenuta incubando cellule T esprimenti quel TCR con una coltura di lieviti che espongono sui propri MHC una grande varietà di peptidi casuali, e analizzando poi i dati ricavati dall’esperimento. Quindi, un processo piuttosto complesso! Nel caso di Ob.1A12, questo processo ha portato a 2330 peptidi (incluso MBP), mentre la matrice di sostituzione specifica per Ob.2F3 ha trovato 4824 epitopi all’interno dell’intero database di peptidi. Questi peptidi includevano sia proteine non umane (batteriche, virali…) che peptidi umani. Per 33 di loro (26 non umani e 7 proteine umane), questo gruppo di ricercatori ha eseguito un test per verificare direttamente la previsione: 25/26 dei peptidi ambientali e 6/7 dei peptidi umani hanno indotto la proliferazione di cellule T che esprimono il TCR Ob.1A12 e/o il Ob.2F3, e questa è una prova della validità di questa analisi! Questi 33 peptidi sono riportati nella figura 7. Questo è l’ultimo passaggio del test immunitario universale, quello che dal TCR conduce agli epitopi. Come avete visto, un enorme insieme di diversi peptidi da diverse fonti reagisce con un singolo tipo di TCR; in altre parole, la cross-reattività è una proprietà intrinseca del TCR. Ciò significa anche che i test di trasformazione linfocitaria (LTT), ampiamente utilizzati in Europa per l’individuazione di infezioni da Borrelia burgdorferi e altri patogeni, comportano un rischio elevato di risultati falsi positivi e richiedono un processo di validazione sperimentale e teorica, attualmente mancante.

Crossreactive epitopes
Figura 7. Una serie di 33 peptidi che si suppongono essere epitopi specifici sia per Ob.1A12 che per Ob.2F3. Tratto da Birnbaum ME et al. 2014.

Siamo ora pronti ad apprezzare appieno i dati pilota che Mark Davis ha presentato al Symposium sull’espansione clonale delle cellule T CD8 nella ME/CFS e nella Lyme cronica.

7. “We have a hit!”

Mark Davis, insieme a Jacob Glanville e José Montoya, hanno sequenziato TCR dal sangue periferico di 50 pazienti ME/CFS e 49 controlli (primo passo del test immunitario universale, ricordate?), quindi li hanno raggruppati usando l’algoritmo GLIPH (secondo passo). Hanno trovato 28 cluster, ciascuno costituito da più di 2500 sequenze simili, e ogni cluster raccoglie sequenze multiple dallo stesso individuo e sequenze (che sono forse più importanti) da pazienti diversi (figura 8). Il cluster che ho cerchiato in rosso, ad esempio, è una raccolta di oltre 3000 TCR simili. La presenza di questi ampi cluster nei pazienti ME/CFS, rispetto ai controlli sani, rappresenta una prova indiretta di una risposta specifica delle cellule T a un trigger comune in questo gruppo di pazienti, che potrebbe essere un agente patogeno o un tessuto del corpo (o tutti e due).

Clustered TCR
Figura 8. Nella ME/CFS le sequenze di TCR ricavati da 50 pazienti formano 28 raggruppamenti che presentano più di 2500 sequenze simili – cosa che assolutamente non avviene nei controlli sani. Questo fa pensare ad una qualche risposta immunitaria ad un patogeno o ad un tessuto umano (o entrambi). Fonte: slide proposta da Mark Davis durante il Community Symposium.

Tra questi 50 pazienti ME/CFS, Davis e colleghi hanno selezionato 6 pazienti con geni HLA simili (figura 9, sinistra), 5 femmine tra loro, e hanno studiato i loro TCR più in profondità. Nella metà destra della figura 9, è possibile vedere per ciascun paziente il grado di espansione clonale delle CTL. Ricordate che nei controlli sani solo circa il 10% dei CTL è composto da cloni di alcune cellule (figura 4, prima riga), mentre qui vediamo che circa il 50% di tutti i CTL è composto da cloni. Quindi, una “marcata espansione clonale” delle cellule T CD8, come ha detto Davis.

ME subjects CD8
Figura 9. A sinistra: sono stati selezionati 6 pazienti ME/CFS con HLA simili. Sulla prima colonna da sinistra sono stati riportati gli identificativi dei pazienti; la seconda colonna ci informa sull’età di ciascuno; la terza sul genere; la quarta avvisa di eventuali esposizione a citomegalovirus; la quinta riguarda i geni del MHC I. A destra: l’analisi dell’espansione clonale delle cellule T CD8 per ognuno dei pazienti. L’espansione clonale è marcata (circa al 50%), se comparata a quella dei controlli sani (circa al 10%).

Le sequenze delle catene α e β dei TCR di tre dei sei pazienti (pazienti L4-02, L4-10 e L3-20) sono riportate in figura 10 (ho verificato che effettivamente si tratta di catene α e β di TCR umani, inserendole in BLAST).

TCR epitope
Figura 10. Catene β (prima colonna) e rispettive catene α (quinta colonna) provenienti da tre pazienti ME/CFSchains  (L4-02, L4-10, and L3-20, ultima colonna).

Quindi, abbiamo visto finora i primi due passaggi del test immunitario universale. E il terzo passo? Nel suo discorso, Mark Davis non ha presentato alcun particolare epitopo, ha solo mostrato una diapositiva con quella che probabilmente è la selezione degli epitopi dalla libreria discussa nel paragrafo 6.3 da parte di uno dei TCR riportati in figura 10. Questa selezione è riportato in figura 11, ma da quella foto non è possibile raccogliere alcuna informazione sull’identità di questi epitopi. Come probabilmente ricorderete dal paragrafo 6.3, l’analisi dei peptidi selezionati da un TCR nella libreria di peptidi  consente l’identificazione di una matrice di sostituzione che può essere utilizzata per selezionare tutti i possibili epitopi di quel TCR specifico, dal database delle proteine. Quest’ultima fase cruciale deve essere ancora eseguita, o è già stata eseguita, ma Davis non ha comunicato i risultati preliminari durante il suo discorso. Recentemente sono state messe a disposizione nuove risorse dalla Open Medicine Foundation, affinché questa ricerca promettente possa essere ulteriormente perseguita (R). Lo scopo qui, come già detto, è di trovare l’antigene che innesca questa risposta delle cellule T. Come ha detto Mark Davis, potrebbe essere un antigene di un agente patogeno specifico (forse un patogeno comune che va e viene) che suscita una risposta immunitaria anomala che finisce per colpire alcuni tessuti ospiti (microglia, per esempio), portando così attivazione immunitaria che è stata recentemente segnalata da Mark Davis stesso e altri in ME/CFS (Montoya JG et al. 2017). L’idea di un patogeno comune che innesca una risposta immunitaria patologica non è nuova in medicina, e la febbre reumatica (RF) è un esempio di una tale malattia: la RF è una malattia autoimmune che attacca il cuore, il cervello e le articolazioni ed è generalmente innescata da uno streptococco che infetta la gola (Marijon E et al. 2012). L’altra possibilità è, naturalmente, quella di un’infezione in corso di qualche tipo, che deve ancora essere rilevata. Come detto (vedi par. 6.1), l’espansione clonale delle cellule T CD8 è presente sia nelle infezioni acute (come la malattia di Lyme) che nelle malattie autoimmuni (come la SM) (figura 4), quindi dobbiamo aspettare l’identificazione dell’antigene se vogliamo capire se l’attività del CTL è contro un agente patogeno e/o contro un tessuto del nostro corpo.

peptide library
Figura 11. Nella figura possiamo osservare la selezione, che avviene in più momenti, di una serie di peptidi da parte di un particolare TCR proveniente da un paziente ME/CFS. La selezione ha luogo tra una enorme quantità di peptidi esposti dall’ HLA-A2 (MHC I) espresso da cellule di lievito. Ad ogni passaggio il numero di possibili peptidi si riduce.

8. La Lyme cronica esiste

È stato probabilmente trascurato il fatto che nel suo discorso, Mark Davis ha riportato anche dati molto interessanti sulla sindrome della malattia di Lyme post-trattamento (PTLDS, nota anche come malattia di Lyme cronica). In particolare, ha trovato un’espansione clonale marcata nelle cellule T CD8 di 4 pazienti PTLDS (circa il 40% dei CTL totali) come riportato nella figura 12: si consideri che in questo caso le fette blu rappresentano cellule T uniche, mentre tutte le altre fette rappresentano cloni! Tutto ciò che è stato detto sull’espansione clonale CD8 nella ME/CFS si applica anche in questo caso: potrebbe essere la prova di un’infezione in corso – forse la stessa B. burgdorferi, come suggerito da diversi modelli animali (Embers ME et al. 2017), (Embers ME et al. 2012), (Hodzic E et al. 2008), (Yrjänäinen H et al. 2010) –  o una coinfezione (un virus?). Oppure potrebbe essere l’espressione di una reazione autoimmune innescata dalla infezione iniziale. Questo deve ancora essere scoperto, eseguendo il test immunitario universale completo, ma ciò che è già chiaro dalla figura 12 è che la PTLDS è una condizione reale, con qualcosa di veramente anomalo nella risposta immunitaria: la Lyme cronica esiste.

PTLDS CD8
Figura 12. Espansione clonale di cellule T CD8 in quattro pazienti affetti da Lyme cronica. L’espansione clonale, che indica l’attività delle cellule T contro un patogeno o un tessuto ospite, è assai marcata.

9. Conclusioni

Mark Davis e altri ricercatori hanno sviluppato un test complesso che è in grado di sequenziare i TCR dai pazienti, raggrupparli in gruppi di TCR che reagiscono agli stessi antigeni e scoprire gli antigeni che hanno attivato quella particolare risposta delle cellule T. Questo test è una sorta di test immunitario universale che è teoricamente in grado di riconoscere se una persona (o un gruppo di pazienti) presenta una risposta immunitaria contro un agente patogeno o contro uno dei loro stessi tessuti (o entrambe le cose). Questo approccio ha già fornito dati pilota su una attivazione anomala delle cellule T CD8 nei pazienti ME/CFS e nei pazienti PTLDS e, si spera, identificherà il trigger di questa risposta immunitaria nel prossimo futuro. Se la ME/CFS è causata da un’infezione attiva, da una malattia autoimmune o da entrambe le cose, il test immunologico universale potrebbe essere in grado di dircelo. Questa nuova tecnologia è per l’immunologia, ciò che il sequenziamento dell’intero genoma è per la genetica, o la metabolomica è per le malattie molecolari: non cerca un particolare agente patogeno o una particolare malattia autoimmune. No, cerca tutte le possibili infezioni e disturbi immunitari, anche quelli che devono ancora essere scoperti.

Siamo in trappola?

Siamo in trappola?

Questa è la traduzione in italiano della versione originale in inglese (disponibile qui).

Introduzione

In quanto segue, presenterò una teoria sviluppata da Robert Phair che potrebbe spiegare le basi molecolari della ME/CFS e aprire le porte a un test diagnostico e a trattamenti efficaci. Userò alcune diapositive dell’intervento che Phair ha tenuto durante il secondo Community Symposium, una conferenza scientifica annuale tenutasi qualche giorno fa a Stanford, sponsorizzata dalla Open Medicine Foundation. L’intervento di Phair è disponibile qui, da 6:42:50. Presenterò anche un’analogia meccanica (quello che intendo sarà chiarito nel seguito) grazie alla quale credo di poter spiegare l’ipotesi di Phair in modo molto intuitivo e immediato. Ma la prima cosa da sottolineare qui è probabilmente che questo modello potrebbe essere solo una teoria elegante che finirà per rivelarsi sbagliata. A tal proposito si tengano a mente le parole di Ronald Davis rispetto all’ipotesi di Phair: “Quello che succede di solito agli scienziati è che finiscono per confutare le loro stesse teorie. La scienza è questo: una costante delusione“.

Il triptofano ha due destini metabolici

Per comprendere il modello proposto da Robert Phair, dobbiamo prima imparare qualcosa sui percorsi metabolici coinvolti (figura 1). Il triptofano (Trp) è uno dei nove amminoacidi essenziali, il che significa che non possiamo sintetizzarlo e quindi proviene da ciò che mangiamo [Salway JG. 2004]. Il Trp viene metabolizzato in due modi alternativi: uno porta alla serotonina e alla melatonina (metà superiore della figura 2), l’altro (chiamato via della chinurenina) fornisce i precursori per la biosintesi del NAD + e fornisce anche metaboliti che inducono la soppressione immunitaria e promuovono la tolleranza immunitaria tra il microbiota commensale e l’ospite (metà inferiore della figura 1). Una revisione della letteratura è disponibile qui: [Mehraj V. et Routy JP. 2015].

Tryptophan metabolism.png
Figura 1. Il triptofano è un amminoacido essenziale con due destini principali: è coinvolto nella sintesi di serotonina e melatonina (metà superiore del grafico); è anche il substrato per la produzione di chinurenina, una molecola chiave che porta alla produzione di NAD+, molecola coinvolta nella regolazione delle cellule T e nella tolleranza immunitaria verso i batteri commensali (metà inferiore del grafico). Ci sono altri destini minori per il triptofano, non elencati qui. Grafico di Paolo Maccallini.

Il percorso metabolico della chinurenina inizia con la conversione di Trp in chinurenina, e questa reazione è regolata, negli esseri umani, da tre enzimi: indoleamina-2,3-diossigenasi presente in due isoforme, IDO-1 e IDO-2, e triptofano 2,3-diossigenasi (TDO) [Salway JG. 2004]. IDO-1 è espresso in vari tessuti [R], mentre IDO-2 è espresso solo in un sottogruppo di questi, cioè fegato, reni, cellule presentanti l’antigene, cervello e placenta [Metz R. et al. 2007], [Witkiewicz AK. et al. 2009]. TDO, d’altra parte, esercita la maggior parte della sua attività nel fegato [R].

IDO flux.png
Figura 2. Questo grafico rappresenta la velocità delle reazioni catalizzate da IDO-1 e IDO-2 (asse verticale) per diverse concentrazioni del substrato (asse orizzontale). IDO-1 è inibito ad alta concentrazione di Trp, mentre IDO-2 raggiunge una velocità limite. Dalla presentazione di Robert Phair.

Sappiamo da decenni che il tasso di degradazione del triptofano ad opera di IDO-1 diminuisce a concentrazioni più elevate di Trp [Yamamoto S. et Hayaishi O. 1967], [Sono M. et al. 1980] ed è stato ipotizzato che l’inibizione di IDO-1 ad alte concentrazioni sia dovuta al fatto che Trp lega l’enzima prima di O2 (a bassa concentrazione l’ordine di legame è invertito) [Efimov I et al. 2012]. È stato anche scoperto che IDO-2 è meno attivo di IDO-1 a basse concentrazioni di Trp e che segue una classica curva di Michaelis-Menten [Meininger D. et al. 2011]. Robert Phair ha raccolto questi dati cinetici su IDO-1 e IDO-2 in un bellissimo diagramma, presentato durante il simposio (figura 2) dove mostra come IDO-1 è più attivo di IDO-2 a bassa concentrazione di Trp, mentre l’attività di IDO-2 aumenta sostanzialmente a concentrazioni del substrato superiore a 10 μM.

table.png
Tabella 1. Cinque mutazioni missense (cioè che portano alla sostituzione di un amminoacido) del gene che codifica IDO-2, presentate da Phair durante la sua conferenza. La prima e l’ultima sono significativamente più comuni nei 20 pazienti affetti da ME/CFS rispetto alla popolazione generale. Sebbene sia possibile prevedere che tutte queste mutazioni riducono l’attività dell’enzima, i dati sperimentali sono disponibili solo per la prima e per la terza [Metz R. et al. 2007], per quanto ne so. Nelle ultime due colonne ho riportato i genotipi per me e un altro paziente ME/CFS e, come potete vedere, P1 (cioè io) ha una versione IDO-2 con un’attività residua inferiore al 10%, mentre l’altro paziente ha una enzima IDO-2 intatto. 
Le mutazioni dannose di IDO-2 sono comuni

Le mutazioni dannose di IDO-2 sono piuttosto comuni e ben il 50% di individui di discendenza europea o asiatica e il 25% di individui di origine africana potrebbero non avere alleli funzionali di IDO2. Due di queste mutazioni sono R248W, che riduce l’attività catalitica di IDO-2 a meno del 10% e Y359STOP, che è associata a nessuna attività residua [Metz R. et al. 2007]. Robert Phair ha scoperto che due di questi polimorfismi a singolo nucleotide (SNP) sono più comuni nella sua coorte di pazienti ME/CFS molto severi, rispetto alla popolazione generale (vedi tabella 1) e che, in media, i pazienti con ME/CFS grave hanno 1.7 alleli IDO-2 non completamente funzionanti.

IDO flux disease
Figura 3. Quando IDO-2 ha un’attività residua molto bassa (come accade con il comune polimorfismo R248W), allora la velocità totale della degradazione di Trp (linea verde) diminuisce a concentrazioni di substrato superiori a 10.000 μM. Dalla presentazione di Robert Phair.

Cosa accade quando IDO-2 non funziona?

Ciò che accade quando l’attività di IDO-2 è significativamente ridotta è chiaramente esemplificata da un altro dei diagrammi di Phair (figura 3): come potete vedere, per una concentrazione di Trp superiore a 10 μM c’è una riduzione della velocità totale della degradazione di Trp, a causa della mancanza di attività di IDO-2; da questo punto in poi, maggiore è la concentrazione del substrato, minore è la capacità del sistema di liberarsene. Ciò significa che se – per qualsiasi ragione – la concentrazione di Trp nel citoplasma aumenta a un livello molto alto, allora è impossibile tornare a un valore normale della concentrazione di Trp. In altre parole, una bassa attività di IDO-2 (dovuta a mutazioni dannose) accoppiata con alte concentrazioni di Trp, apre le porte a uno stato patologico. Secondo Robert Phair, questo stato stazionario è ciò che chiamiamo ME/CFS.

Una analogia meccanica

Accade spesso che fenomeni fisici diversi siano governati dalle stesse equazioni. Ad esempio, molti sistemi meccanici possono essere descritti attraverso reti elettriche, portando a una comprensione e gestione più semplice di questi sistemi. In questo caso, ho cercato un sistema meccanico che potesse essere equivalente, da un punto di vista matematico, al percorso metabolico in cui il Trp è degradato da IDO-1 e IDO-2, quando IDO-2 non funziona. Ho cercato in altre parole un sistema equivalente, che potesse essere più semplice da comprendere. Descrivo un tale modello in figura 4, in cui una palla con una massa m è sottoposta all’accelerazione gravitazionale g e a una forza F, che la spinge su per una rampa inclinata, con una forma molto precisa. In questa analogia abbiamo che il potenziale gravitazionale della palla (dato da mgy) rappresenta la concentrazione di Trp nel citoplasma, il peso W della palla moltiplicato per sinθ è la velocità della degradazione di Trp da parte di IDO-1 e IDO-2 (flusso totale di IDO), e F è l’afflusso di Trp proventiente dal sangue, nel citoplasma. Quando la palla viene messa nella regione verde del pendio, rimane nella regione verde, dal momento che il campo gravitazionale la spinge verso un’altezza inferiore; d’altra parte, se la palla viene messa nella regione arancione, la forza F la spinge ad un’altitudine maggiore, lontano dall’area verde.

mechanical analogy.png
Figura 4. Un’analogia meccanica della degradazione di Trp da IDO 1 e IDO 2, quando IDO 2 non funziona. La concentrazione di Trp è rappresentata dal potenziale gravitazionale di una palla con una massa m, il flusso totale di IDO è il peso W moltiplicato per sinθ, la forza F è l’afflusso di Trp all’interno della cellula, dal sangue. Quando la palla si trova nell’area verde (bassa concentrazione di Trp) viene tenuta lì da W; quando è nella regione arancione, è spinta verso l’alto da F. Di Paolo Maccallini.

Questo è il comportamento esatto del percorso metabolico di cui stiamo parlando, quando IDO-2 è non funzionante: se la concentrazione di Trp è inferiore a un certo livello, il sistema è in grado di mantenere stabile questa concentrazione o di ridurla (regione verde); quando la concentrazione è superiore a questo valore limite, può solo aumentare ulteriormente o rimanere stabile (regione arancione). Questa è la “ipotesi della trappola metabolica”.

Ci sono buone notizie

Se questo modello fosse vero, almeno per un sottogruppo di pazienti, sarebbe un’ottima notizia. Perché? Se si considera il sistema meccanico equivalente in figura 4 ci si rende conto in un attimo che lo stato patologico ha il potenziale di essere invertito abbastanza facilmente: bisogna solo ridurre F, ovvero l’afflusso di Trp dal sangue. Poiché il Trp proviene da ciò che mangiamo, è teoricamente possibile modulare il suo livello con un intervento dietetico. Sono possibili anche altre strade; infatti, il sistema può tornare alla normalità aumentando il valore di θ, che rappresenta l’attività di IDO nella nostra analogia, e l’attività di IDO è fortemente indotta da INF-γ [Werner ER. et al. 1987]. Ma non approfondirò la questione dei trattamenti, in questa sede; vorrei piuttosto riportare ciò che Ron Davis ha detto durante il simposio per quanto riguarda gli interventi terapeutici: “E’ pericoloso fare tentativi per modulare questo percorso metabolico… Esortiamo i pazienti a non tentare di manipolare il metabolismo del triptofano. Dateci un po’ di tempo per capire come intervenire. “

cattura-7.png
Figura 5. Simulazione matematica della degradazione del Trp da parte di IDO-1 e IDO-2, quando IDO-2 non è completamente attivo. Un aumento della concentrazione di Trp nel sangue di soli 10 giorni è sufficiente per indurre una riduzione del triptofano intracellulare (B) e della chinurenina intracellulare (C) per circa 30 settimane. Ma il modello prevede che siano necessari periodi più lunghi di aumento del triptofano ematico (8 settimane) per inibire costantemente l’attività di IDO e quindi entrare nella trappola metabolica. Dalla presentazione di Robert Phair.

Alla ricerca di una conferma sperimentale della teoria

Phair è stato in grado di costruire un modello matematico dei percorsi coinvolti (questo è ciò che fa per vivere, tra l’altro), così ha simulato le conseguenze metaboliche della concentrazione di Trp nel sangue quando IDO-2 è rotto, in silico. Come si può vedere nella figura 5, l’inizio dello stato di malattia richiede due mesi di alta concentrazione di Trp nel sangue, e questo determina un’alta concentrazione intracellulare di Trp (B), una bassa chinurenina intracellulare (C) e una attività di IDO compromessa (D). Si noti che dopo l’iniziale aumento del Trp ematico, la concentrazione di questo aminoacido nel sangue ritorna normale (A), quindi questo parametro ematico non può essere utilizzato per misurare questa anormalità metabolica. L’OMF ha finanziato un team di scienziati per cercare la conferma sperimentale di queste previsioni, tra cui Ron Davis, Julie Wilhelmy, Curt Fischer, Sundari Suresh. I ricercatori hanno studiato solo 6 pazienti, fino ad ora, e hanno scoperto che in effetti la concentrazione di chinurenina all’interno delle cellule è significativamente ridotta nei pazienti rispetto ai controlli e anche l’attività enzimatica di IDO è ridotta; allo stesso tempo la concentrazione di Trp è aumentata nelle cellule dei pazienti ME/CFS, ma non in modo statisticamente significativo. Phair spera che con l’incremento del numero di pazienti, questo aumento di Trp raggiunga significatività statistica. 

La trappola metabolica spiega i dati sperimentali disponibili e i sintomi?

Questo modello prevede una alterazione del metabolismo della serotonina, con un aumento della sintesi di serotonina e quindi una possibile riduzione dei recettori post-sinaptici della serotonina. La serotonina è coinvolta in molte funzioni del cervello ed è probabilmente poco noto che questo neurotrasmettitore ha un ruolo chiave nel controllo sistemico della pressione arteriosa [Watts SW. et al. 2012]. Pertanto, un’anomalia in questo sistema potrebbe spiegare l’intolleranza ortostatica, che è una caratteristica clinica comune nella ME/CFS. Anche la melatonina, l’ormone del sonno e i suoi recettori potrebbero essere influenzati negativamente da questo slittamento metabolico, e ciò potrebbe spiegare i disturbi del sonno presenti in questa popolazione di pazienti.

La riduzione della chinurenina prevista dall’ipotesi, d’altra parte, potrebbe portare a una ridotta sintesi di nicotinammide adenina dinucleotide (NAD +), che è il prodotto finale del percorso metabolico della chinurenina e, come menzionato da Ron Davis durante il simposio, NAD + è coinvolto in circa 400 reazioni chimiche nelle nostre cellule. Tra queste, il trasporto di elettroni dal ciclo di Krebs alla catena di trasporto degli elettroni e la conversione del piruvato in acetil CoA, da parte dell’enzima piruvato deidrogenasi [Salway JG. 2004], solo per citarne due (figura 1). E noi sappiamo da diversi studi che il ciclo di Krebs sembra essere alterato nella ME/CFS [Yamano E, et al. 2016] e che l’enzima piruvato deidrogenasi sembra essere inibito in questi pazienti [Fluge Ø. et al. 2016].

Come se ciò non bastasse, l’attività di IDO è coinvolta nella regolazione del sistema immunitario: i metaboliti del percorso metabolico della chinurenina (come la chinerunina stessa) sembrano coinvolti nella inibizione delle cellule T, nella promozione della apoptosi delle cellule T, e nella attivazione delle cellule Treg [R]. È stato dimostrato, ad esempio, che la somministrazione di un inibitore dell’enzima IDO può esacerbare i sintomi del modello murino di sclerosi multipla [Sakurai K. et al. 2002] e della colite ulcerosa mediata da cellule T [Gurtner GJ. et al. 2003], solo per citare due risultati sperimentali. Ma il lettore ricorderà che l’espansione clonale delle cellule T è stata recentemente riportata nella ME/CFS da Mark Davis (vedi qui per approfondimenti). Quindi una possibilità è che la riduzione di chinurenina sia la vera causa della disregolazione delle cellule T nella ME/CFS, oltre che in altre malattie del sistema immunitario (Ron Davis ha menzionato la sclerosi multipla).

Recentemente la chinurenina e l’attività di IDO sono state anche implicate nella regolazione dello stato di tolleranza immunitaria tra il microbiota commensale e l’ospite [Zelante T. et al. 2014] e, come il lettore saprà, una riduzione della diversità del microbiota e un aumento della permeabilità intestinale sono state riportate più volte nella ME/CFS [Frémont M et al. 2013], [Giloteaux L et al. 2016] (vedi qui per approfondimenti).

Pertanto, se questo modello fosse vero, una modulazione della chinurenina potrebbe correggere sia le alterazioni metaboliche e immunologiche riportate nella ME/CFS, sia le alterazioni nel microbiota intestinale. È incoraggiante sapere che la chinurenina sarà testata nei pazienti ME/CFS da Johnas Blomberg, come menzionato da Ron Davis durante il simposio (alle 7:17:50).

Alta prevalenza, bassa penetranza

Il lettore potrebbe essere deluso nello scoprire che, secondo l’ipotesi di Phair, la predisposizione genetica alla ME/CFS è molto diffusa nella popolazione generale. Perché Phair ha cercato mutazioni molto comuni, se la malattia ha una prevalenza di circa lo 0,4%? Phair doveva trovare un modello che potesse spiegare anche gli episodi epidemici della malattia. Se ci fosse una predisposizione genetica alla ME/CFS – ha pensato – dovrebbe essere comune, molto diffusa nella popolazione generale, altrimenti non potremmo spiegare gli episodi epidemici della malattia, come quello che accaduto a Lake Tahoe (Nevada), oppure a Lyndonville (New York), o a Bergen (Norvegia), e così via: in alcuni di questi tragici eventi, fino al 25% della popolazione ha sviluppato la ME/CFS (ho scritto una nota su questo argomento, alcuni mesi fa, qui). Questo sembra ragionevole; ma come può una predisposizione genetica così prevalente portare alla malattia solo in un piccolo sottogruppo di coloro che ne sono portatori? La risposta a questa domanda è nelle figure 4 e 5: è necessario un livello molto alto di triptofano per cadere nella trappola e deve durare per due mesi. Questo probabilmente accade in rare circostanze e quindi questa predisposizione genetica molto diffusa ha bassa penetranza: la probabilità che porterà a sviluppare la ME/CFS è bassa.

Is it a trap?

Is it a trap?

Introduction

In what follows I present a theory developed by Robert Phair that might explain the molecular basis of ME/CFS and also open the door to a diagnostic test and to effective treatments. I will use some slides from the lecture that Phair gave during the Second Annual Community Symposium, a high profile scientific conference held some days ago at Stanford, sponsored by the Open Medicine Foundation. You can follow Phair’s lecture here, from 6:42:50. I will also present a mechanical analogy (what I mean will be quite clear when you go through the article) in order to hopefully describe Phair’s hypothesis in a very intuitive and immediate way. But the first thing to point out here is probably that this model might only be a beautiful, very elegant theory that will turn out to be wrong. Just keep in mind what Ronald Davis said, referring to Phair’s hypothesis, at the end of the symposium: “What usually happens when you do science is that you just show that yourself are wrong. That’s what science is all about: it’s a constant disappointment.”

Tryptophan has two fates

In order to understand the model proposed by Robert Phair, we first have to learn something about the metabolic pathways involved (figure 1). Tryptophan (Trp) is one of the nine essential amino acids, which means that we can’t synthesize it and thus it must be supplied in our diet [Salway JG. 2004]. Trp is metabolized in two alternative ways: one leads to serotonin and melatonin (upper half of figure 2), the other one (called kynurenine pathway) provides precursors for the biosynthesis of NAD+ and it also provides metabolites that induce immune suppression and promote immune tolerance between commensal microbiota and the host (lower half of figure 1), as reviewed here: [Mehraj V. et Routy JP. 2015].

Tryptophan metabolism.png
Figure 1. Tryptophan is an essential amino acid with two main fates: it is involved in the synthesis of serotonin and melatonin (upper half of the chart); it is also the substrate for the production of kynurenine, a key molecule that leads to the production of NAD and that is involved in the regulation of T cells and immune tolerance to commensal bacteria (lower half of the chart). There are other minor fates for tryptophan, not listed here. Chart by Paolo Maccallini.

The kynurenine pathway starts with the production of kynurenine from Trp, and this reaction is regulated by three enzymes in human beings: indoleamine-2,3-dioxygenase that is present in two isoforms, IDO-1 and IDO-2, and tryptophan 2,3-dioxygenase (TDO) [Salway JG. 2004]. IDO-1 is expressed in various tissues [R], whereas IDO2 is expressed only in a subset of these, namely liver, kidney, antigen presenting cells, brain and placenta [Metz R. et al. 2007], [Witkiewicz AK. et al. 2009]. TDO, on the other hand, exerts the majority of its activity in the liver [R].

IDO flux.png
Figure 2. This plot represents the velocities of the reactions catalyzed by IDO-1 and IDO-2 (vertical axis) for different concentrations of the substrate (horizontal axis). IDO-1 is inhibited at a high concentration of Trp, while IDO-2 reaches a limit velocity. From Robert Phair’s presentation.

We have known for decades that the rate of tryptophan degradation by IDO-1 decreases at higher concentrations of Trp [Yamamoto S. et Hayaishi O. 1967], [Sono M. et al. 1980] and it has been hypothesized that the inhibition of IDO-1 at high concentrations is due to the fact that Trp binds the enzyme before O2 (at low concentration the order of binding is reversed) [Efimov I et al. 2012]. It has also been found that IDO-2 is less active than IDO-1 at low concentrations of Trp and that it follows a classic Michaelis–Menten kinetics [Meininger D. et al. 2011]. Robert Phair has collected these kinetic data on IDO-1 and IDO-2 in a beautiful diagram, presented during the symposium (figure 2) where he shows how IDO-1 is more active than IDO-2 at low concentration of Trp, while IDO-2 activity increases substantially at concentrations of the substrate above 10 µM.

table.png
Table 1. Five missense mutations within the gene that encodes IDO-2, presented by Phair during his lecture. The first one and the last one are significantly more common in the 20 severe ME/CFS patients than they are in the general population. These mutations are predicted (in silico) to reduce enzyme activity, but experimental data are only available for the first one and for the third one [Metz R. et al. 2007], as far as I know. In the last two columns I have reported the genotypes for me and another ME/CFS patient, and as you can see, P1 (me) has an IDO-2 version with less than 10% residual activity, while the other patient has a fully active IDO-2 enzyme.
IDO-2 damaging mutations are common

Damaging mutations of IDO-2 are quite common and as many as 50% of individuals of European or Asian descent and 25% of individuals of African descent may lack functional IDO2 alleles. Two such very well-known mutations are R248W, which reduces IDO-2 catalytic activity to less than 10%, and Y359STOP, which is associated with no activity at all [Metz R. et al. 2007]. Robert Phair has found that two of these single nucleotide polymorphisms (SNPs) are more common in his cohort of very severe ME/CFS patients than in the general population (see table 1) and that, on average, severely ill ME/CFS patients have 1.7 non-fully functional IDO-2 alleles.

IDO flux disease
Figure 3. When IDO-2 has a very low residual activity (as it happens with the common R248W polymorphism), then the total velocity of Trp degradation (green line) decreases at substrate concentrations greater than 10.000 µM. From Phair’s presentation.

What happens if IDO-2 doesn’t work?

What happens when IDO-2 activity is widely reduced is clearly exemplified by another of Phair’s diagrams (figure 3): as you can see, for Trp concentration above 10 µM there is a reduction of the total velocity of Trp degradation, due to the lack of IDO-2 activity; from this point on, the higher the concentration of the substrate, the lower the ability of the system to get rid of it. This means that if – for any reason – Trp concentration in cytoplasm increases at a very high level, then it is impossible to come back to a normal value of Trp concentration. In other words, low IDO-2 activity (due to damaging mutations) coupled with high Trp concentrations, opens the door to a pathological steady state. According to Robert Phair, this steady state is what we call ME/CFS.

A mechanical analogy

It often happens that completely unrelated phenomena are ruled by the same equations. For instance, many mechanical systems can be described through electrical networks, leading to an easier understanding and handling of these systems. In this case, I searched for a mechanical system that could be equivalent, from a mathematical standpoint, to the metabolic pathway in which Trp is degraded by IDO-1 and IDO-2 when IDO-2 is broken; and which could be easy to understand. I describe such a model in figure 4, where a ball with a mass m is subjected to the gravitational acceleration g and to a force F, that pushes it up a slope with a very precise shape. In this analogy we have that the gravitational potential of the ball represents Trp concentration in the cytoplasm, the weight W of the ball multiplied by sinθ is the velocity of Trp degradation by IDO-1 and IDO-2 (IDO total flux), and F is the Trp influx in the cytoplasm, from the blood. When the ball is put in the green region of the slope, it remains in the green region, since the gravitational field pulls it down to a lower height; on the other hand, if the ball is put on the orange region, the force F pushes the ball to a higher altitude, away from the green area.

mechanical analogy.png
Figure 4. A mechanical analogy of Trp degradation by IDO 1 and IDO 2, when IDO 2 is broken. Trp concentration is represented by the gravitational potential of a ball with a mass m, IDO total flux is the weight multiplied by sinθ, the force F is the influx of Trp within the cell, from the blood. When the ball is in the green area (low Trp concentration) it is kept there by W; when it is in the orange region, it is pushed up by F. By Paolo Maccallini.

This is the exact behaviour of the metabolic pathway we are talking about, when IDO-2 is broken: if Trp concentration is below a certain level, the system is able to maintain stable this concentration or to reduce it (green region); when the concentration is above this limit value, it can only increase further or remain stable (orange region). This is the “metabolic trap hypothesis“.

The good news

If this model was true, for at least a subgroup of patients, it would be very good news. Why? Well, if you look at the mechanical analogy you realize in just a glance that the pathological state has the potential to be reversed quite easily: you just need to reduce F, the influx of Trp from the blood. Since Trp comes from what we eat, it is theoretically possible to modulate its level with a dietary intervention. Other avenues are also possible; in fact, the system can go back to normal by increasing the value of θ, which represents IDO activity in our analogy, and IDO activity is strongly induced by INF-γ [Werner ER. et al. 1987]. But I won’t go further into that and I would rather like to mention what Ron Davis said during the symposium about treatments: “This is a dangerous pathway to experiment on… We are urging people to not experiment with this pathway. Give us some time to figure it out.”

cattura-7-e1539009397869.png
Figure 5. Mathematical simulation of Trp degradation by IDO-1 and IDO-2, when IDO-2 is not fully active. An increase in Trp concentration in blood of just 10 days is enough to induce low high intracellular tryptophan (B), intracellular kynurenine (C) for about 30 weeks. But the model predicts that longer stressors are required (8 weeks) in order to steadily inhibit IDO activity and thus enter the metabolic trap. From Phair’s presentation.

Searching for experimental confirmation of the model

Phair was able to build a mathematical model of the pathways involved (this is what he does for a living, by the way), so he simulated the metabolic consequences of high Trp concentration in the blood when IDO-2 is broken, in silico. As you can see in figure 5, the starting of the disease state requires two months of high blood Trp concentration which leads to high intracellular Trp concentration (B), low intracellular kynurenine (C) and impaired IDO activity (D). Note that after the initial increase in blood Trp, the amino acid concentration in blood comes back normal (A), so it can’t be used to measure this metabolic abnormality. The OMF funded a team of scientists in order to search for experimental confirmation of these predictions, which includes Ron Davis, Julie Wilhelmy, Curt Fischer, Sundari Suresh. They have studied only 6 patients, so far, and they have found that in fact kynurenine concentration within cells is significantly reduced in patients vs controls and IDO flux is also reduced; at the same time Trp concentration is increased in cells from ME/CFS patients, but not in a statistically significant fashion. Phair hopes that as the number of patients increases, this increase of Trp will reach statistical significance. Interestingly enough, urine analyses of three ME/CFS patients that I have collected myself, show low kynurenic acid and quinolinic acid, two metabolites that belong to the kynurenine pathway.

Does the hypothesis explain the clinical picture and available data?

This model predicts a disruption of serotonin metabolism, with an increase in serotonin synthesis and thus a possible down-regulation of post-synaptic serotonin receptors. Serotonin is involved in many functions of the brain and it is probably little known that this neurotransmitter plays a key role in systemic blood pressure control [Watts SW. et al. 2012]. Thus, an abnormality in this system could explain orthostatic intolerance, which is a common clinical feature of ME/CFS. Melatonin, the “sleep hormone”, and its receptors could also be negatively affected by this metabolic switch, and this could explain the sleep disturbances present in this patient population.

The reduction of kynurenine predicted by the hypothesis, on the other hand, could lead to reduced synthesis of nicotinamide adenine dinucleotide (NAD+), which is the end product of the kynurenine pathway and, as Ron Davis mentioned during the symposium, NAD+ is involved in 400 reactions in our cells. Among them, the transport of electrons from the Krebs cycle to the electron transport chain and the conversion of pyruvate to acetyl CoA by pyruvate dehydrogenase [Salway JG. 2004], just to mention two of them (figure 1). We know from several studies that the Krebs cycle seems to be affected [Yamano E, et al. 2016] and that pyruvate dehydrogenase appears to be inhibited in ME/CFS [Fluge Ø. et al. 2016].

As if this was not enough, IDO activity is involved in the regulation of the immune system: metabolites of the kynurenine pathway (like kynurenine itself) are thought to block T-cell activation and trigger T-cell apoptosis, while also promoting Tregs [R]. It has been shown, for instance, that administration of an inhibitor of IDO can exacerbate symptoms of the murine model of multiple sclerosis [Sakurai K. et al. 2002] and of T-mediated ulcerative colitis [Gurtner GJ. et al. 2003] just to mention two experimental results. You might remember that T cell clonal expansion has been recently reported in ME/CFS by Mark Davis, and I have reviewed these results here. So one possible avenue is that low kynurenine might be the real cause of T cell dysregulation in ME/CFS as well as in other immune diseases (Ron Davis mentioned multiple sclerosis).

Recently kynurenine and IDO activity have also been implicated in the regulation of the state of immune tolerance between commensal microbiota and the host [Zelante T. et al. 2014] and, as the reader knows, reduced microbiota diversity and leaky gut have been consistently reported in ME/CFS [Frémont M et al. 2013], [Giloteaux L et al. 2016].

Thus it appears that if this model was true, kynurenine modulation could correct both the metabolic and the immunologic abnormalities reported in ME/CFS, and maybe also the alterations in gut microbiota. It is encouraging to know that kynurenine will be tested in ME/CFS patients by Johnas Blomberg, as Ron Davis mentioned during the symposium (at 7:17:50).

High prevalence, low penetrance

The reader might be disappointed in discovering that, according to Phair’s hypothesis, the genetic predisposition to ME/CFS is so widespread in the general population. Why did Phair search for very common mutations, if the disease has a prevalence of about 0.4%? Well, Phair had to find a model that could explain also the epidemic episodes of the disease. If there was a genetic predisposition to ME/CFS – he reasoned – it would be common, very prevalent in the general population, otherwise we could not explain the epidemic episodes of the disease, like the one that happened in Lake Tahoe (Nevada), or in Lyndonville (New York), or in Bergen (Norway), and so forth: in some of these tragic events, up to 25% of the population developed ME/CFS. I wrote a note on that, some months ago, here. This seems reasonable; but how can a genetic predisposition so prevalent lead to the disease in only a small subgroup of those who carry it? The answer to that question is in figures 4 and 5: you need a very high level of tryptophan to fall into the trap, and it has to last for two months. This probably happens in rare circumstances and thus this very prevalent genetic predisposition has low penetrance: the chance that it will lead to full-blown ME/CFS is low.