La versione in inglese di questo articolo è disponibile qui.

Introduzione

Molti dei miei lettori sono probabilmente a conoscenza dei tentativi attualmente fatti per simulare matematicamente il metabolismo energetico dei pazienti ME/CFS, integrando i dati metabolici con i dati genetici. In particolare, il dr. Robert Phair ha sviluppato un modello matematico delle principali vie metaboliche coinvolte nella conversione dell’energia, dall’energia immagazzinata nei legami chimici di grandi molecole come glucosio, acidi grassi e amminoacidi, all’energia immagazzinata nell’adenosina trifosfato (ATP), pronta per l’uso. Phair, che è un ingegnere, ha determinato le equazioni differenziali che regolano questa enorme quantità di reazioni chimiche e le ha adattate al profilo genetico trovato nei pazienti ME/CFS. Ma già alcuni anni fa due fisici pubblicarono un interessante modello matematico del metabolismo energetico durante e dopo l’esercizio, nei pazienti ME/CFS (Lengert N. et Drossel B. 2015). In quanto segue descriverò questo modello e le sue previsioni e vedremo da vicino queste equazioni differenziali.

Le vie metaboliche che sono state analizzate

Il modello di Lengert e Drossel estende due sistemi di equazioni differenziali precedentemente pubblicati che descrivono il comportamento della glicolisi, del ciclo di Krebs (enormemente semplificato come una singola reazione!), della catena di trasporto degli elettroni mitocondriale (descritta in dettaglio), del sistema della creatina chinasi e della conversione di adenosina difosfato (ADP) in ATP, nei muscoli scheletrici (Korzeniewski B. et Zoladz JA. 2001), (Korzeniewski B. et Liguzinski P. 2004). Gli autori hanno aggiunto equazioni per l’accumulo di lattato e il suo efflusso fuori dalla cellula, per la sintesi de novo di inosina monofosfato (IMP) durante il recupero, per la degradazione dell’adenosina monofosfato (AMP) in IMP, per la degradazione di IMP in inosina e ipoxantina. Tutte le vie coinvolte sono raccolte nella figura 1. Queste reazioni sono descritte da 15 equazioni differenziali e la soluzione è un insieme di 15 funzioni del tempo che rappresentano la concentrazione dei principali metaboliti coinvolti (come il lattato, il piruvato, l’ATP, ecc.). Diamo ora uno sguardo più da vicino a una di queste equazioni e alla struttura generale dell’intero sistema di equazioni.

1-s2.0-S0301462215000630-fx1.jpg
Figura 1. Questa è una rappresentazione schematica dei percorsi metabolici descritti dal modello matematico sviluppato da Lengert e Drossel. In dettaglio: sintesi citosolica e degradazione di ADP, AMP e IMP (a sinistra), via della protein chinasi e glicolisi (centro), catena di trasporto degli elettroni e ciclo TCA (a destra). Da Lengert N. et Drossel B. 2015.
lactate dehydrogenase.PNG
Figure 2. La lattato deidrogenasi è l’enzima coinvolto nella catalisi della conversione del lattato in piruvato. Questa reazione procede in entrambe le direzioni.

Equazioni differenziali per reazioni chimiche

Consideriamo l’equazione utilizzata dagli autori per la reazione catalizzata dalla lattato deidrogenasi (la trasformazione del piruvato in lattato, figura 2) dove si è anche tenuto conto dell’efflusso di lattato dal citosol. L’equazione differenziale è la seguente:

equation.PNG

dove i tre parametri sono determinati sperimentalmente e i loro valori sono

equations.PNG

Il primo descrive l’attività dell’enzima lattato deidrogenasi: più questo parametro è elevato, più l’enzima è attivo. Il secondo descrive la reazione inversa (dal lattato al piruvato). Il terzo è una misura di quanto lattato la cellula è in grado di trasportare al di fuori della sua membrana. Forse il lettore si è reso conto che l’equazione del lattato è una equazione differenziale ordinaria del primo ordine. Si dice “primo ordine” perché nell’equazione compare solo la derivata prima della funzione che dobbiamo determinare (lattato, in questo caso); “ordinario” si riferisce al fatto che il lattato è funzione di una sola variabile (il tempo, in questo caso). Si vede immediatamente che un’equazione come questa può essere scritta come segue:

equation bis.PNG

Supponiamo ora di avere altre due equazioni differenziali di questo tipo, una per il piruvato e una per i protoni (le altre due funzioni del tempo che sono presenti nell’equazione):

equations.PNG

Allora avremmo un sistema di tre equazioni differenziali ordinarie come questo:System.PNG

I valori iniziali delle funzioni che dobbiamo determinare sono raccolti nell’ultima riga: questi sono i valori che le funzioni incognite assumono all’inizio della simulazione (t = 0). In questo caso, questi valori sono le concentrazioni di lattato, piruvato e protoni nel citosol, a riposo. Le tre funzioni del tempo sono chiamate la soluzione del sistema. Questo tipo di sistema di equazioni è un esempio di problema di Cauchy, e sappiamo dalla teoria matematica che non solo ha una soluzione, ma che questa soluzione è unica. Inoltre, mentre questa soluzione  può non essere sempre facilmente trovata con metodi rigorosi, è abbastanza facile risolvere il problema con metodi approssimati, come il  metodo di Runge-Kutta o il metodo di Heun. Detto questo, il sistema di equazioni differenziali ordinarie proposto da Lengert e Drossel per il metabolismo energetico è proprio come quello qui sopra, con l’eccezione che comprende 15 equazioni anziché tre. Quindi, la principale difficoltà in questo tipo di simulazione non è l’aspetto computazionale, ma la determinazione dei parametri (come quelli enzimatici) e dei valori iniziali, che devono essere raccolti dalla letteratura medica o devono essere determinati sperimentalmente, se non sono già disponibili. L’altro problema è come progettare le equazioni: esistono spesso diversi modi per costruire un modello matematico di una reazione chimica o di qualsiasi altro processo biologico.

Il modello matematico della ME/CFS

Come adattiamo ai pazienti ME/CFS un modello del metabolismo energetico che è stato impostato con parametri presi da esperimenti condotti su soggetti sani? Questa è un’ottima domanda, e abbiamo visto che Robert Phair ha dovuto usare i dati genetici dei pazienti ME/CFS relativi agli enzimi chiave del metabolismo energetico, al fine di impostare il suo modello. Ma questi dati non erano disponibili quando Lengert e Drossel hanno progettato le loro equazioni. E allora? I due fisici hanno cercato studi sulla fosforilazione ossidativa nei pazienti ME/CFS e hanno scoperto che qusto processo cellulare era stato misurato con diverse impostazioni sperimentali e da diversi gruppi e che il denominatore comune di tuti gli studi era una riduzione di funzione che andava da circa il 35% (Myhill S et al. 2009), (Booth, N et al 2012), (Argov Z. et al. 1997), (Lane RJ. et al. 1998) a circa il 20% (McCully KK. et al. 1996), (McCully KK. et al. 1999). Quindi l’idea degli autori è stata di moltiplicare i parametro enzimatici di ciascuna reazione appartenente alla fosforilazione ossidativa per un numero compreso tra 0,6 (grave ME / CFS) a 1,0 (persona sana). In particolare, i due fisici hanno scelto un valore di 0,7 per la ME/CFS, nei loro esperimenti in silico (cioè esperimenti virtuali condotti nel processore di un computer).

Previsioni del modello matematico

Il modello matematico è stato utilizzato per eseguire prove di esercizio in silico con varie lunghezze e intensità. Quello che Lengert e Drossel hanno trovato è stato che il tempo di recupero nel paziente ME/CFS medio era sempre maggiore se confrontato con quelli di una persona sana. Il tempo di recupero è definito come il tempo necessario affinché una cellula ripristini il suo contenuto di ATP (97% del livello in stato di riposo) dopo lo sforzo. Nella figura 3 si vedono i risultati della simulazione per un esercizio molto breve (30 secondi) e molto intenso. Come potete vedere, nel caso di una cellula sana (a sinistra) il tempo di recupero è di circa 600 minuti (10 ore) mentre una cellula di una persona con ME/CFS (a destra) richiede più di 1500 minuti ( 25 ore) per recuperare.

half minute 1.png
Figura 3. Risultati della simulazione per un esercizio con una durata di 30 secondi e un’intensità elevata (consumo iniziale di ATP 300 volte il valore di riposo). A sinistra, il caso di una cellula muscolare scheletrica sana, a destra il caso di una cellula di una persona con ME/CFS le cui reazioni mitocondriali hanno una velocità ridotta al 70% della velocità del controllo sano. I grafici li ho ottenuti utilizzando la versione online del software, disponibile qui.

Un altro risultato interessante della simulazione è un aumento di AMP nei pazienti rispetto al controllo (figura 3, linea arancione). Ciò è dovuto all’uso compensativo delle due vie metaboliche in figura 4: la reazione catalizzata dall’adenilato chinasi, in cui due molecole di ADP sono utilizzate per produrre una molecola di ATP e una molecola di AMP; e la reazione catalizzata dalla deaminasi AMP, che degrada AMP in IMP (che viene quindi convertito in inosina e ipoxantina). Queste due reazioni sono utilizzate dai pazienti ME/CFS più che dal controllo sano, al fine di aumentare la produzione di ATP al di fuori dei mitocondri.

adenylate-kinase-and-amp-deaminase1.png
Figura 4. La via metabolica a sinistra è utilizzata dai pazienti ME/CFS più che nel controllo per aumentare la produzione di ATP al di fuori dei mitocondri, secondo questo modello matematico. Il percorso sulla destra degrada l’AMP in IMP.

Se diamo un’occhiata più da vicino alle concentrazioni di AMP e IMP nelle 4 ore successive allo sforzo (figura 5), vediamo effettivamente una maggiore produzione di IMP (linea verde) e AMP (linea arancione) nei muscoli scheletrici dei pazienti (destra) rispetto ai controlli (sinistra).

half minute 3.png
Figura 5. Lo stesso della figura 3, ma ingrandito per dare uno sguardo più da vicino alle concentrazioni durante le 4 ore successive allo sforzo. La cellula sana è a sinistra, mentre le cellule di una persona con ME/CFS sono sulla destra.

Un’ulteriore via di compensazione utilizzata dai pazienti (secondo questo modello) è la produzione di ATP da ADP da parte dell’enzima creatina chinasi (figura 6). Questo è un altro modo che abbiamo per produrre ATP nel citosol senza l’aiuto dei mitocondri. In questo modello di ME/CFS, vi è un aumento nell’uso di questo percorso, che porta a una diminuzione della concentrazione cellulare di fosfocreatina e un aumento della concentrazione cellulare di creatina (figura 7).

creatine kinase
Figura 6. La reazione catalizzata dalla creatina chinasi: una molecola di ADP viene convertita in ATP grazie al gruppo fosfato trasportato dalla fosfocreatina.
half minute 4.png
Figura 7. La concentrazione di fosfocreatina nel citosol delle cellule muscolari scheletriche è inferiore nella ME/CFS (a destra) rispetto al controllo (a sinistra) durante e dopo l’esercizio. Ciò è dovuto al maggiore uso di questa molecola per produrre ATP in modo anaerobico nel metabolismo ME/CFS rispetto al controllo. I parametri per questa simulazione sono gli stessi descritti nella figura 3.

Confronto con i dati metabolici disponibili

Sono curioso di vedere se i dati dei vari studi metabolomici condotti dopo la pubblicazione del modello di Lengert e Drossel sono coerenti con le previsioni del modello stesso. Discuterò questo argomento in un altro articolo perché devo ancora studiare questo aspetto. Vorrei solo sottolineare che se ritenessimo vero l’alto tasso di degradazione dell’IMP proposto in questo modello, probabilmente troveremmo un alto livello di ipoxantina nel sangue dei pazienti, rispetto ai controlli, mentre questo metabolita è diminuito nei pazienti, secondo uno studio (Armstrong CW et al. 2015).

Annunci

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...