Mark Davis e il test immunitario universale

Mark Davis e il test immunitario universale

Versione in italiano di questo articolo in inglese. Traduzione a cura di Chiara Scarpellini

1. Introduzione

Queste sono solo alcune note raccolte dal discorso che Mark Davis ha pronunciato in occasione del Community Symposium tenutosi nell’agosto scorso (2017) a Stanford (video). Nei paragrafi 2, 3, 4 e 5 introdurrò alcune nozioni di base sui recettori delle cellule T (T cell receptors: TCR); il paragrafo 6, attraverso riferimenti  al video già menzionato e a tre articoli pubblicati da Davis et al. nel corso degli ultimi quattro anni, descrive una  nuova tecnologica sviluppata da Mark Davis e colleghi. Questi cenni preliminari dovrebbero auspicabilmente fornire i mezzi per comprendere a pieno la portata dei dati pilota presentati da Mark Davis a proposito dell’attività delle cellule T nella ME/CFS (paragrafo 7) e nella malattia di Lyme cronica (paragrafo 8), mostrando perché tale tecnologia prometta di divenire una sorta di test universale per qualsiasi tipo di infezione o patologia autoimmune, nota o sconosciuta.

2. Cellule T

I linfociti T sono una tipologia di leucociti (o globuli bianchi), vale a dire la componente cellulare del nostro sistema immunitario. La gran parte dei linfociti T in circolo è rappresentata da linfociti T helper (T helper cells: Th cells)  e da linfociti T citotossici (cytotoxic T lymphocytes: CTL). Mentre la funzione dei linfociti T helper è quella di regolare l’attività degli altri leucociti attraverso la produzione di un’ampia gamma di trasmettitori chimici (le citochine, cytokines), le CTL sono coinvolte direttamente nella soppressione delle cellule ospiti infette. I linfociti T appartengono al ramo cosiddetto adattivo del sistema immunitario, assieme alle cellule B (le fabbriche di anticorpi), e, in quanto tali, il loro compito è quello di garantire una difesa specifica, su misura, contro gli agenti patogeni: per contrastare uno specifico agente patogeno, il nostro sistema immunitario può schierare in campo non solo anticorpi specifici ma anche specifici linfociti T (Th cells e CTL). Il ramo innato del sistema immunitario, invece, (nel quale rientrano le cellule natural killer, i macrofagi, le cellule dendritiche, i mastociti…) è in grado di fornire soltanto una difesa aspecifica, una prima linea di risposta immunitaria.

3. Recettori dei linfociti T

I linfociti T sono in grado di andare alla ricerca di specifici patogeni grazie a una molecola espressa sopra la propria superficie, chiamata recettore del linfocita T (TCR). Nella figura 1 si può vedere una schematica rappresentazione del TCR e del meccanismo in virtù del quale il linfocita T riconosce il proprio target. Gli antigenti (proteine) degli agenti patogeni vengono indicati ai linfociti T da altre cellule del nostro corpo: vengono esposte sopra molecole chiamate Complesso Maggiore di Istocompatibilità (MHC), che si trova espresso sulla membrana esterna. Se un dato antigene mostra compatibilità con il TCR di uno specifico linfocita T, tale linfocita T si attiva e comincia a proliferare (espansione clonale, clonal expansion). Le due catene principali (α and β) sono assemblate combinando la trascrizione di segmenti di gene, ognuno dei quali ha copie multiple, leggermente diverse fra loro: in altre parole, i TCR vengono assemblati a partire da peptidi scelti a caso da un insieme di diverse alternative possibili. Questo comporta un repertorio di 10^15 diversi possibili TCR  (Mason DA 1998). Ogni linfocita T mostra un solo tipo di TCR.

Figure 1. Metà superiore. Le cellule Th e le CTL condividono lo stesso TCR: in entrambi i casi la molecola è il prodotto dell’assemblaggio di due peptidi (catena α e catena β), ma mentre il TCR delle Th cells (sulla destra) si trova espresso accanto alla molecola CD4, che lega con il MHC II, il TCR dei CTL è associato alla molecola CD8 (sulla sinistra), che è specifica per il MHC I. Le barre nere rappresentano quattro catene – un complesso chiamato CD3 – coinvolte nella trasmissione dei segnali (signaling) dal TCR al nucleo della cellula (by Paolo Maccallini). Metà inferiore. Un’efficace rappresentazione strutturale del TCR legato al complesso peptide-MHC (pMHC), tratto da Gonzàlez PA et al. 2013. In verde il peptide; in blu la catena β; in verde scuro la catena α. Le CDR (regioni determinanti di complementarietà, complementarity determining regions, in arancione) sono composte di quei residui delle catene α e β che legano direttamente il pMHC.

4. Cellule T helper 

Le cellule T helper sono programmate per riconoscere esclusivamente antigeni esposti dalle molecole MHC di seconda classe (II): questa classe di MHC viene espressa sulla membrana esterna di alcuni leucociti, principalmente le cellule dendritiche, le cellule B e i macrofagi (tutte assieme dette “cellule che presentano l’antigene”, antigen presenting cells: APC). Le molecole MHC II legano il TCR delle cellule T helper grazie al peptide CD4 (espresso unicamente dalle cellule T helper). L’antigene presentato dalle molecole MHC è un peptide lungo 13-17 amminoacidi (Rudensky, et al., 1991) (figura 2).

Figure 2. Il TCR espresso da una Th cell lega un epitopo esposto da un MHC II espresso sulla membrana plasmatica di una APC.  Vengono rappresentate anche le catene α e β del MHC II     (disegno di Paolo Maccallini).

5. Linfociti T citotossici 

I TCR espressi dai linfociti T citotossici (CTL) possono legare solo antigeni esposti dalle molecole MHC di prima classe (I), che si trovano nella membrana esterna di qualunque cellula del nostro corpo. La glicoproteina CD8 è la molecola che rende i TCR espressi dalle CTL specifici per il MHC I. Mentre gli antigeni esposti dalle APC appartengono a patogeni raccolti sul campo di battaglia di passate infezioni, i peptidi esposti dal MHC I di una specifica cellula appartengono a patogeni che hanno fatto ingresso nella cellula stessa, e pertanto costituiscono la prova di un’infezione intracellulare ancora in atto (figura 3). Nel momento in cui un CTL riconosce un antigene che combacia con il proprio TCR, il CTL iduce l’apoptosi (morte programmata) della cellula che mostra l’antigene. Gli antigeni esposti dal MHC I sono peptidi che vanno dagli 8 ai 10 amminoacidi (Stern, et al., 1994).MHC I.JPG

Figure 3. Una cellula infetta espone un antigene virale sul proprio MHC I. Il TCR di un CTL si lega a questo peptide ed invia un segnale interno diretto al suo proprio nucleo, il quale risponde attivando l’apoptosi (attraverso il rilascio di granzimi, ad esempio) della cellula infetta (disegno di Paolo Maccallini).   

6. Il test immunologico universale

Nel corso del suo discorso, Mark Davis illustra alcuni concetti base sul sistema immunitario, prima di passare a introdurre i nuovi, entusiasmanti dati riguardo alla ME/CFS e alla Lyme cronica (o post-treatment Lyme disease syndrome: PTLDS). Contestualmente, però, dedica alcuni minuti alla descrizione di un complesso nuovo test che teoricamente renderebbe possibile estrapolare tutte le informazioni contenute nel repertorio di TCR presenti – in un dato momento – nel sangue di un essere umano. Un test del genere – che chiamerei “test immunologico universale” – avrebbe la capacità di determinare se un paziente presenta un’infezione in corso (e, nel caso, indicare il patogeno coinvolto) oppure una malattia autoimmune (anche qui specificando la natura dell’autoantigene, ossia il tessuto attaccato dal sistema immunitario). A quanto mi è dato di comprendere, il test richiede tre passaggi, che elenco nelle sezioni seguenti.

6.1. Primo step: sequenziamento del TCR

Come già spiegato nel paragrafo 3, quando un linfocita T incontra un peptide a cui è compatibile, comincia a proliferare; pertanto, nel sangue di un paziente con infezione in corso (o con reazione contro il proprio organismo, cioè con reazione autoimmune) è possibile trovare molteplici copie di linfociti T che esprimono il medesimo TCR: a differenza dei controlli sani, nei quali circa il 10% delle CD8 totali è rappresentato da copie di pochi diverse linfociti T (figura 4, prima linea), nei pazienti affetti da Lyme incipiente –  un esempio di infezione attiva – o sclerosi multipla (MS) –  un esempio di malattia autoimmune – abbiamo una massiccia clonazione di alcune linee di CTL (figura 5, seconda e terza riga, rispettivamente). Il primo step del test immunologico universale starà allora nell’identificazione dell’esatta sequenza di TCR espressa dai linfociti T presenti nel sangue, come si legge in Han A et al. 2014, dove troviamo descritto il sistema per sequenziare i geni delle catene α e β di un dato linfocita T. Tale approccio permette di costruire grafici come quello in figura 4 e quindi permette di determinare se il paziente presenti in atto un’attività anomala dei linfociti T oppure no. Qualora si riscontri un fenomeno di espansione clonale, è legittimo ipotizzare che stia avendo luogo o un’infezione o una condizione autoimmune di qualche sorta.

Clonal expansion CD8
Figure 4. Ogni cerchio rappresenta un paziente. Nella prima riga vediamo quattro controlli sani, che non presentano affatto espansione clonale delle cellule CD8 (come nel primo paziente da sinistra) oppure la presentano in maniera assai moderata (come indicato dalle porzioni in blu, bianco e grigio). Nella seconda riga troviamo invece quattro pazienti con malattia di Lyme attiva (fase incipiente) e possiamo ben notare come ciascuno di loro, nessuno escluso, presenti espansione clonale di solo tre diverse T cells (porzioni in rosso, blu e arancione). Nella terza riga, infine, abbiamo quattro pazienti affetti da MS, le cui cellule CD8 sono per maggior parte rappresentate da cloni di una selezione ristretta di T cells.
Fonte: slide proposte da Mark Davis durante il Community Symposium.

6.2. Secondo step: raggruppamento dei TCR 

Mark Davis e colleghi hanno realizzato un software capace di identificare i TCR che condividono il medesimo antigene, sia in un singolo individuo che trasversalmente a un gruppo. L’algoritmo è stato denominato GLIPH (grouping of lymphocyte interaction by paratope hotspots) ed ha dato prova di poter raggruppare – per fare un esempio – i recettori  dei linfociti T CD4 di 22 soggetti con infezione da M. tuberculosis latente in 16 gruppi distinti, ognuno dei quali comprende TCR provenienti da almeno tre individui (Glanville J et al. 2017). Cinque di questi gruppi sono riportati nella figura 5. L’idea sottostante è che TCR che appartengono allo stesso raggruppamento reagiscano allo stesso complesso peptide-MHC (pMHC).

GLIPH
Figure 5.  Cinque gruppi di TCR provenienti da 22 diversi pazienti affetti da turbercolosi latente, raggruppati grazie al GLIPH. La prima colonna da sinistra riporta l’identificativo dei TCR; la seconda l’identificativo dei pazienti. Le CDR per le catene β e α si trovano, rispettivamente, sulla terza e sulla quinta colonna. Tratto da Glanville J et al. 2017.

6.3. Terzo step: ricerca degli epitopi

Come abbiamo visto, questa nuova tecnologia consente di rilevare se sia in atto un’espansione clonale di linfociti T sequenziando i TCR dal sangue periferico. Consente inoltre di raggruppare i TCR presenti in un singolo paziente o condivisi da più pazienti. Il passaggio successivo è quello di identificare a quale/i tipo/i di antigene ognuno di questi raggruppamenti reagisca. Infatti, se potessimo identificare degli antigeni comuni in un gruppo di pazienti dai sintomi comparabili nei quali si riscontri un’espansione clonale in atto e simili TCR, saremmo messi in grado di comprendere se il loro sistema immunitario stia attaccando un patogeno (e di identificare il patogeno) o se stia piuttosto attaccando un tessuto ospite e, qualora fosse questo il caso, di identificare il tessuto. Come già detto, il numero di possibili combinazioni per il materiale genetico dei TCR è calcolato attorno ai 10^15, ma il numero dei possibili epitopi di cellule Th è circa 20^15, che corrisponde a più di 10^19. Ciò implica che i TCR debbano essere in una qualche misura cross-reattivi se vogliono essere in grado di riconoscere tutti i possibili peptidi esposti dai MHC (Mason DA 1998). Il grado di tale cross-reattività e il meccanismo attraverso il quale viene ottenuta sono stati spiegati con esattezza da Mark Davis e colleghi in un recente articolo (Birnbaum ME et al. 2014), che ci fornisce il terzo step del test immunologico universale. Lo scopo di questa fase consiste nel prendere un dato TCR e trovare il repertorio dei suoi specifici antigeni (giova ripetere che, appunto, ogni TCR reagisce a più antigeni). Per comprendere come ciò sia possibile, guardiamo a uno degli esperimenti descritti nell’articolo più sopra citato. I ricercatori si sono concentrati su due TCR ben precisi (chiamati Ob.1A12 e Ob.2F3), clonati da un paziente con MS e noti per essere capaci di riconoscere i pepetidi 85-99 (figura 6) della proteina basica della mielina (MBP) esposti dall’ HLA-DR15. Hanno poi preparato un insieme di cellule di lievito che esprimono molecole HLA-DR15, ognuna caratterizzata da un diverso peptide formato da 14 amminoacidi, con amminoacidi fissi esclusivamente alle posizioni 1 e 4, dove il peptide è ancorato al MHC (figura 6, sinistra). Quando alla coltura di cellule di lievito  che esprimono complessi pMHC vengono aggiunte copie di Ob.1A12, queste legano solo con alcune di quelle e, come è possibile vedere dalla parte destra della figura 6, per ciascuna posizione degli epitopi legati dal Ob.1A12 esiste un amminoacido con maggior tasso di probabilità: ad esempio, l’epitopo Ob.1A12 tipico presenta preferibilmente alanina (A) in posizione -4, istidina (H) in posizione -3, arginina (R) in posizione -2, e così via. Da notare che istidina (H) in posizione 2 e fenilanina (F) in posizione 3 sono amminoacidi obbligatori per un epitopo di  Ob.1A12.

Ob. 1A12
Figure 6. Sulla sinistra: il peptide 85-99 della proteina basica della mielina (myelin basic protein, MPB) è risaputo essere un epitopo per il TCR Ob.1A12. In posizione 1 e 4 possiede due residui che gli consentono di legare con la molecola MHC. In posizione -2, -1, 2, 3 3 5 troviamo invece i residui che legano con il TCR. La seconda riga rappresenta l’epitopo generico della libreria peptidica utilizzata per identificare il grado di cross-reattività tra tutti i possibili epitopi di Ob.1A12. A destra: la probabilità di ciascun amminoacido per ciascuna posizione è rappresentata da sfumature di viola. Come potete vedere, l’istidina (H) in posizione 2 e la fenilalanina (F) in posizione 3 sono amminoacidi obbligatori affinché un epitopo sia reattivo con Ob.1A12. Da (Birnbaum ME et al 2014).

La tabella sulla destra della figura 6 rappresenta, infatti, una tabella di sostituzione (substitution matrix) di dimensioni 14×20, uno strumento impiegato per scansionare il database dei peptidi in modo da trovare, tra tutti i peptidi conosciuti espressi da creature viventi, tutti i possibili epitopi specifici per Ob.1A12. Le matrici di sostituzione vengono solitamente utilizzate nel cosiddetto allineamento di peptidi (peptide alignment), una tecnica che punta all’identificazione di similitudini tra peptidi. Tali matrici sono basate su considerazioni di tipo evoluzionistico (Dayhoff, et al., 1978) o sullo studio delle regioni conservate delle proteine (Henikoff, et al., 1992). Ma la ricerca degli epitopi specifici di un dato TCR richiede (come abbiamo visto per Ob.1A12) una matrice di sostituzione costruita ad hoc per quel TCR: ogni TCR richiede la propria matrice di sostituzione, ottenuta incubando cellule T esprimenti quel TCR con una coltura di lieviti che espongono sui propri MHC una grande varietà di peptidi casuali, e analizzando poi i dati ricavati dall’esperimento. Quindi, un processo piuttosto complesso! Nel caso di Ob.1A12, questo processo ha portato a 2330 peptidi (incluso MBP), mentre la matrice di sostituzione specifica per Ob.2F3 ha trovato 4824 epitopi all’interno dell’intero database di peptidi. Questi peptidi includevano sia proteine non umane (batteriche, virali…) che peptidi umani. Per 33 di loro (26 non umani e 7 proteine umane), questo gruppo di ricercatori ha eseguito un test per verificare direttamente la previsione: 25/26 dei peptidi ambientali e 6/7 dei peptidi umani hanno indotto la proliferazione di cellule T che esprimono il TCR Ob.1A12 e/o il Ob.2F3, e questa è una prova della validità di questa analisi! Questi 33 peptidi sono riportati nella figura 7. Questo è l’ultimo passaggio del test immunitario universale, quello che dal TCR conduce agli epitopi. Come avete visto, un enorme insieme di diversi peptidi da diverse fonti reagisce con un singolo tipo di TCR; in altre parole, la cross-reattività è una proprietà intrinseca del TCR. Ciò significa anche che i test di trasformazione linfocitaria (LTT), ampiamente utilizzati in Europa per l’individuazione di infezioni da Borrelia burgdorferi e altri patogeni, comportano un rischio elevato di risultati falsi positivi e richiedono un processo di validazione sperimentale e teorica, attualmente mancante.

Crossreactive epitopes
Figura 7. Una serie di 33 peptidi che si suppongono essere epitopi specifici sia per Ob.1A12 che per Ob.2F3. Tratto da Birnbaum ME et al. 2014.

Siamo ora pronti ad apprezzare appieno i dati pilota che Mark Davis ha presentato al Symposium sull’espansione clonale delle cellule T CD8 nella ME/CFS e nella Lyme cronica.

7. “We have a hit!”

Mark Davis, insieme a Jacob Glanville e José Montoya, hanno sequenziato TCR dal sangue periferico di 50 pazienti ME/CFS e 49 controlli (primo passo del test immunitario universale, ricordate?), quindi li hanno raggruppati usando l’algoritmo GLIPH (secondo passo). Hanno trovato 28 cluster, ciascuno costituito da più di 2500 sequenze simili, e ogni cluster raccoglie sequenze multiple dallo stesso individuo e sequenze (che sono forse più importanti) da pazienti diversi (figura 8). Il cluster che ho cerchiato in rosso, ad esempio, è una raccolta di oltre 3000 TCR simili. La presenza di questi ampi cluster nei pazienti ME/CFS, rispetto ai controlli sani, rappresenta una prova indiretta di una risposta specifica delle cellule T a un trigger comune in questo gruppo di pazienti, che potrebbe essere un agente patogeno o un tessuto del corpo (o tutti e due).

Clustered TCR
Figura 8. Nella ME/CFS le sequenze di TCR ricavati da 50 pazienti formano 28 raggruppamenti che presentano più di 2500 sequenze simili – cosa che assolutamente non avviene nei controlli sani. Questo fa pensare ad una qualche risposta immunitaria ad un patogeno o ad un tessuto umano (o entrambi). Fonte: slide proposta da Mark Davis durante il Community Symposium.

Tra questi 50 pazienti ME/CFS, Davis e colleghi hanno selezionato 6 pazienti con geni HLA simili (figura 9, sinistra), 5 femmine tra loro, e hanno studiato i loro TCR più in profondità. Nella metà destra della figura 9, è possibile vedere per ciascun paziente il grado di espansione clonale delle CTL. Ricordate che nei controlli sani solo circa il 10% dei CTL è composto da cloni di alcune cellule (figura 4, prima riga), mentre qui vediamo che circa il 50% di tutti i CTL è composto da cloni. Quindi, una “marcata espansione clonale” delle cellule T CD8, come ha detto Davis.

ME subjects CD8
Figura 9. A sinistra: sono stati selezionati 6 pazienti ME/CFS con HLA simili. Sulla prima colonna da sinistra sono stati riportati gli identificativi dei pazienti; la seconda colonna ci informa sull’età di ciascuno; la terza sul genere; la quarta avvisa di eventuali esposizione a citomegalovirus; la quinta riguarda i geni del MHC I. A destra: l’analisi dell’espansione clonale delle cellule T CD8 per ognuno dei pazienti. L’espansione clonale è marcata (circa al 50%), se comparata a quella dei controlli sani (circa al 10%).

Le sequenze delle catene α e β dei TCR di tre dei sei pazienti (pazienti L4-02, L4-10 e L3-20) sono riportate in figura 10 (ho verificato che effettivamente si tratta di catene α e β di TCR umani, inserendole in BLAST).

TCR epitope
Figura 10. Catene β (prima colonna) e rispettive catene α (quinta colonna) provenienti da tre pazienti ME/CFSchains  (L4-02, L4-10, and L3-20, ultima colonna).

Quindi, abbiamo visto finora i primi due passaggi del test immunitario universale. E il terzo passo? Nel suo discorso, Mark Davis non ha presentato alcun particolare epitopo, ha solo mostrato una diapositiva con quella che probabilmente è la selezione degli epitopi dalla libreria discussa nel paragrafo 6.3 da parte di uno dei TCR riportati in figura 10. Questa selezione è riportato in figura 11, ma da quella foto non è possibile raccogliere alcuna informazione sull’identità di questi epitopi. Come probabilmente ricorderete dal paragrafo 6.3, l’analisi dei peptidi selezionati da un TCR nella libreria di peptidi  consente l’identificazione di una matrice di sostituzione che può essere utilizzata per selezionare tutti i possibili epitopi di quel TCR specifico, dal database delle proteine. Quest’ultima fase cruciale deve essere ancora eseguita, o è già stata eseguita, ma Davis non ha comunicato i risultati preliminari durante il suo discorso. Recentemente sono state messe a disposizione nuove risorse dalla Open Medicine Foundation, affinché questa ricerca promettente possa essere ulteriormente perseguita (R). Lo scopo qui, come già detto, è di trovare l’antigene che innesca questa risposta delle cellule T. Come ha detto Mark Davis, potrebbe essere un antigene di un agente patogeno specifico (forse un patogeno comune che va e viene) che suscita una risposta immunitaria anomala che finisce per colpire alcuni tessuti ospiti (microglia, per esempio), portando così attivazione immunitaria che è stata recentemente segnalata da Mark Davis stesso e altri in ME/CFS (Montoya JG et al. 2017). L’idea di un patogeno comune che innesca una risposta immunitaria patologica non è nuova in medicina, e la febbre reumatica (RF) è un esempio di una tale malattia: la RF è una malattia autoimmune che attacca il cuore, il cervello e le articolazioni ed è generalmente innescata da uno streptococco che infetta la gola (Marijon E et al. 2012). L’altra possibilità è, naturalmente, quella di un’infezione in corso di qualche tipo, che deve ancora essere rilevata. Come detto (vedi par. 6.1), l’espansione clonale delle cellule T CD8 è presente sia nelle infezioni acute (come la malattia di Lyme) che nelle malattie autoimmuni (come la SM) (figura 4), quindi dobbiamo aspettare l’identificazione dell’antigene se vogliamo capire se l’attività del CTL è contro un agente patogeno e/o contro un tessuto del nostro corpo.

peptide library
Figura 11. Nella figura possiamo osservare la selezione, che avviene in più momenti, di una serie di peptidi da parte di un particolare TCR proveniente da un paziente ME/CFS. La selezione ha luogo tra una enorme quantità di peptidi esposti dall’ HLA-A2 (MHC I) espresso da cellule di lievito. Ad ogni passaggio il numero di possibili peptidi si riduce.

8. La Lyme cronica esiste

È stato probabilmente trascurato il fatto che nel suo discorso, Mark Davis ha riportato anche dati molto interessanti sulla sindrome della malattia di Lyme post-trattamento (PTLDS, nota anche come malattia di Lyme cronica). In particolare, ha trovato un’espansione clonale marcata nelle cellule T CD8 di 4 pazienti PTLDS (circa il 40% dei CTL totali) come riportato nella figura 12: si consideri che in questo caso le fette blu rappresentano cellule T uniche, mentre tutte le altre fette rappresentano cloni! Tutto ciò che è stato detto sull’espansione clonale CD8 nella ME/CFS si applica anche in questo caso: potrebbe essere la prova di un’infezione in corso – forse la stessa B. burgdorferi, come suggerito da diversi modelli animali (Embers ME et al. 2017), (Embers ME et al. 2012), (Hodzic E et al. 2008), (Yrjänäinen H et al. 2010) –  o una coinfezione (un virus?). Oppure potrebbe essere l’espressione di una reazione autoimmune innescata dalla infezione iniziale. Questo deve ancora essere scoperto, eseguendo il test immunitario universale completo, ma ciò che è già chiaro dalla figura 12 è che la PTLDS è una condizione reale, con qualcosa di veramente anomalo nella risposta immunitaria: la Lyme cronica esiste.

PTLDS CD8
Figura 12. Espansione clonale di cellule T CD8 in quattro pazienti affetti da Lyme cronica. L’espansione clonale, che indica l’attività delle cellule T contro un patogeno o un tessuto ospite, è assai marcata.

9. Conclusioni

Mark Davis e altri ricercatori hanno sviluppato un test complesso che è in grado di sequenziare i TCR dai pazienti, raggrupparli in gruppi di TCR che reagiscono agli stessi antigeni e scoprire gli antigeni che hanno attivato quella particolare risposta delle cellule T. Questo test è una sorta di test immunitario universale che è teoricamente in grado di riconoscere se una persona (o un gruppo di pazienti) presenta una risposta immunitaria contro un agente patogeno o contro uno dei loro stessi tessuti (o entrambe le cose). Questo approccio ha già fornito dati pilota su una attivazione anomala delle cellule T CD8 nei pazienti ME/CFS e nei pazienti PTLDS e, si spera, identificherà il trigger di questa risposta immunitaria nel prossimo futuro. Se la ME/CFS è causata da un’infezione attiva, da una malattia autoimmune o da entrambe le cose, il test immunologico universale potrebbe essere in grado di dircelo. Questa nuova tecnologia è per l’immunologia, ciò che il sequenziamento dell’intero genoma è per la genetica, o la metabolomica è per le malattie molecolari: non cerca un particolare agente patogeno o una particolare malattia autoimmune. No, cerca tutte le possibili infezioni e disturbi immunitari, anche quelli che devono ancora essere scoperti.

Why we can’t use LTTs, yet

A line of T cells (called Ob.2F3) expressing the same T cell receptor (TCR) from an MS patient was studied in 2014 and it was found to proliferate when incubated with 4824 different peptides. Thirty-three of them were further studied (see figure) and found to belong to both Homo sapiens and several different, unrelated microbes (Birnbaum ME et al. 2014). The taking home message here is that T cells are not specific to a single pathogen, they are highly cross-reactive, as it was already pointed out in this pivotal study: (Mason DA 1998). And this means that we can’t use lymphocyte transformation tests (LTTs) the way we do now. 

I feel really frustrated when patients send me their LTTs and ask me to comment the results. I have to say that they have vasted their money and that these results are useless. I do hope that my blog can make a difference and stop this unfair commerce at the expenses of desperate folks.

Crossreactive epitopes
Figure. A set of 33 peptides (both human and environmental) predicted to be specific epitopes for both Ob.1A12 and Ob.2F3. From (Birnbaum ME et al. 2014).

 


 

 

 

Donate

Consider supporting this website with a donation.

€1,00

Convegno nazionale sulla ME/CFS, Paolo Maccallini

Quello che segue è il mio intervento durante il convegno nazionale sulla ME/CFS tenutosi a Thiene,  tappa italiana dell’End ME/CFS Worldwide Tour. L’intervento è molto denso e veloce, ho dovuto condensare 4 anni di ricerche in 30 minuti. Qualcuno ha notato che sembravo dopato. Lo ero, letteralmente: ero alla fine di un lungo trattamento cortisonico e avevo assunto modafinil per la circostanza. Altrimenti non sarei riuscito. Le slide usate per questo intervento, insieme ad altre che non ho avuto modo di far vedere al convegno, sono disponibili qui. Sotto il video c’è un sommario del contenuto dell’intervento, e il momento del video in cui i vari argomenti sono stati trattati. Ringrazio Giuseppe Pozza per aver realizzato il video.

  • Note biografiche, criteri diagnostici e disturbi cognitivi (00:50)
  • Intolleranza ortostatica (08:39)
  • Citochine (09:45)
  • Citotossicità delle NK (11:15)
  • Disfunzioni metaboliche (12:40)
  • Anomalie del sistema nervoso centrale (20:50)
  • Anomalie del microbioma (22:40)
  • Analisi genetica (24:20)
  • La mia ricerca su Lyme e autoanticorpi (27:50)
  • Anticorpi anti-muscarinici e anti-beta adrenergici nella M/CFS (32:20)
  • Studi a cui ho partecipato come paziente, conclusioni e ringraziamenti (34:53)

Riascoltando il mio intervento ho provato stupore nel constare, forse per la prima volta, come la mia mente sia sopravvissuta. Solo io posso sapere cosa ho passato, nessuno sa che per gli ultimi 17 anni sono stato incapace di pensare per più del 90% del tempo. E non intendo incapace di risolvere sistemi di equazioni differenziali; no, intendo incapace di sostenere una conversazione o di leggere un libro.

Nonostante sia stata così colpita dalla malattia, nonostante sia stata privata di stimoli, nostante la solitudine estrema, i farmaci inutili e il consumarsi dei lustri, è sopravvissuta. Questo organo di un chilo e mezzo scarso che mi contiene tutto, che ha perso così tanto, che ho dato per spacciato tante volte, è sopravvissuto. La vita vuole vivere e non si arrende.

Donazione

Considera una donazione per sostenere questo blog.

€1,00

ME/CFS, a mathematical model

ME/CFS, a mathematical model

Robert Phair and the trap

Many of my readers are probably aware of the attempts that are currently being made to mathematically simulate energy metabolism of ME/CFS patients, integrating metabolic data with genetic data. In particular, dr. Robert Phair has developed a mathematical model of the main metabolic pathways involved in energy conversion, from energy stored in the chemical bonds of big molecules like glucose, fatty acids, and amino acids, to energy stored in adenosine triphosphate (ATP), ready to use. Phair, who is an engineer, determined the differential equations that rule this huge amount of chemical reactions and adapted them to the genetic profile found in ME/CFS patients. Genetic data are the result of the analysis of the exomes of more than 40 patients (I am among them). He found, in particular, that the enzyme ATP synthase (one step of the mitochondrial electron transport chain, called complex V) presents a damaging variant that is found in less than 30% of healthy controls while being detected in more than 60% of ME/CFS patients. He found other enzymes (I don’t know their exact number) of energy metabolism meeting these same criteria. Setting a reduced activity for these enzymes in his mathematical model, he found that, after particularly stressing events (such as infections), ME/CFS patients metabolism can fall into a low-energy state without being able to escape from it (this theory has been called the “metabolic trap hypothesis”) (R, R, R). Phair’s hypothesis is currently being experimentally tested and has not been published yet, but some years ago two physicists published an interesting mathematical model of energy metabolism during and after exercise, in ME/CFS patients compared to healthy controls (Lengert N. et Drossel B. 2015). In what follows I will describe this model and its predictions and we will also see how these differential equations look like. 

Metabolic pathways that have been analyzed

The model by Lengert and Drossel extends two previously published systems of differential equations that describe the behavior of glycolysis, Krebs cycle (hugely simplified as a single reaction!), mitochondrial electron transport chain (described in detail), creatine kinase system, and of conversion of adenosine diphosphate (ADP) in ATP, in skeletal muscles (Korzeniewski B. et Zoladz JA. 2001), (Korzeniewski B. et Liguzinski P. 2004). They added equations for lactate accumulation and efflux out of the cell, for de novo synthesis of inosine monophosphate (IMP) during recovery, for degradation of adenosine monophosphate (AMP) into IMP, for degradation of IMP to inosine and hypoxanthine. All the pathways involved are collected in figure 1. These reactions are described by 15 differential equations and the solution is a set of 15 functions of time that represent the concentration of the main metabolites involved (such as lactate, pyruvate, ATP etc). Let’s now take a closer look at one of these equations and at the general structure of the whole system of equations.

1-s2.0-S0301462215000630-fx1.jpg
Figure 1. This is a schematic representation of the metabolic pathways described by the mathematical model developed by Lengert and Drossel. In detail: cytosolic synthesis and degradation of ADP, AMP and IMP (left), protein kinase pathway and glycolysis (centre), electron transport chain and TCA cycle (right). From Lengert N. et Drossel B. 2015.
lactate dehydrogenase.PNG
Figure 2. Lactate dehydrogenase is the enzyme involved in the catalysis of the conversion of lactate to pyruvate. This reaction goes in both directions.

Differential equations for chemical reactions

Let’s consider the equation used by the Authors for the reaction catalyzed by lactate dehydrogenase (the transformation of pyruvate into lactate, figure 2) where they also took into account the efflux of lactate from the cytosol. The differential equation is the following one:

equation.PNG

where the three parameters are experimentally determined and their values are

equations.PNG

The first one describes the activity of the enzyme lactate dehydrogenase: the higher this parameter is, the more active the enzyme is. The second one describes the inverse reaction (from lactate to pyruvate). The third one is a measure of how much lactate the cell is able to transport outside its membrane. You have probably recognized that the equation of lactate is a first-order ordinary differential one. We say “first-order” because in the equation there is only the first-order derivative of the function that we have to determine (lactate, in this case); “ordinary” refers to the fact that lactate is a function only of one variable (time, in this case). You can easily realize that an equation like that can be written as follows:

equation bis.PNG

Suppose now that we had other two differential equations of this type, one for pyruvate  and one for protons (the other two functions of time that are present in the equation):

equations.PNG

We would have a system of three ordinary differential equations like this oneSystem.PNG

The initial values of the functions that we have to determine are collected in the last row: these are the values that they have at the beginning of the simulation (t=0). In this case, these values are the concentrations of lactate, pyruvate and protons in the cytosol, at rest. The three functions of time are called the solution of the system. This kind of system of equations is an example of a Cauchy’s problem, and we know from mathematical theory that not only it has a solution, but that this solution is unique. Moreover, whereas this solution can’t be always easily found with rigorous methods, it is quite easy to solve the problem with computational methods, like the Runge-Kutta method or the Heun’s method. All that said, the system of ordinary differential equations proposed by Lengert and Drossel for energy metabolism is just like this one, with the exception that it comprises 15 equations instead of three. So, the main difficulty in this kind of simulation is not the computational aspect but the determination of the parameters (like the enzymatic ones) and of the initial values, that have to be collected from the medical literature or have to be determined experimentally, if not already available. The other problem is how to design the equations: there are several ways to build a model for a chemical reaction or for any other biological process.

The mathematical model of ME/CFS

How do we adapt to ME/CFS patients a model of energy metabolism that has been set with parameters taken from experiments performed on healthy subjects? This is a very good question, and we have seen that Robert Phair had to use genetic data from ME/CFS patients on key enzymes of energy metabolism, in order to set his model. But this data was not available when Lengert and Drossel designed their equations. So what? They looked for studies about the capacity of oxidative phosphorylation in ME/CFS patients in comparison with healthy subjects, and they found that it had been measured with different experimental settings  by various groups and that the common denominator was a reduction ranging from about 35% (Myhill S et al. 2009), (Booth, N et al 2012), (Argov Z. et al. 1997), (Lane RJ. et al. 1998) to about 20% (McCully KK. et al. 1996), (McCully KK. et al. 1999). So the idea of the Authors was to multiply the enzymatic parameter of each reaction belonging to the oxidative phosphorylation by a number ranging from 0.6 (severe ME/CFS) to 1.0 (healthy person). In particular, they used a value of 0.7 for ME/CFS, in their in silico experiments.

Predictions of the mathematical model

The mathematical model was used to perform in silico exercise tests with various length and intensities. What they found was that the time of recovery in the average ME/CFS patient was always greater if compared to a healthy person. The time of recovery is defined as the time that a cell needs to replenish its content of ATP (97% of the level in resting state) after exertion. In Figure 3 you see the results of the simulation for a very short (30 seconds) and very intense exercise. As you can see, in the case of a healthy cell (on the left) the recovery time is of about 600 minutes (10 hours) whereas a cell from a person with ME/CFS (on the right) requires more than 1500 minutes (25 hours) to recover.

half minute 1.png
Figure 3. Results of the simulation for an exercise with a duration of 30 seconds and a high intensity (initial ATP consumption 300 times the resting value). On the left, the case of a healthy skeletal muscle cell, on the right the case of a cell from a person with ME/CFS whose mitochondrial reactions have a velocity reduced to 70% of the velocity of healthy control. The plot has been obtained by using the online version of the software, available here.

Another interesting result of the simulation is an increase in AMP in patients vs control (figure 3, orange line). This is due to the compensatory use of the two metabolic pathways in figure 4: the reaction catalyzed by adenylate kinase, in which two molecules of ADP are used to produce a molecule of ATP and a molecule of AMP; and the reaction catalyzed by AMP deaminase, that degrades AMP to IMP (that is then converted to inosine and hypoxanthine). These two reactions are used by ME/CFS patients more than in healthy control, in order to increase the production of ATP outside mitochondria.

adenylate kinase and amp deaminase.PNG
Figure 4. The metabolic pathway on the left is used by ME/CFS patients more than in control to increase the production of ATP outside mitochondria, according to the present model. The pathway on the right then degrades AMP to IMP.

If we give a closer look at the concentrations of AMP and IMP in the 4 hours following the exertion (figure 5), we actually see an increased production of IMP (green line) and AMP (orange line) in skeletal muscles of ME/CFS patients (on the right) vs controls (left).

half minute 3.png
Figure 5. The same as figure 3, but magnified in order to have a closer look at concentrations during the 4 hours following the exertion. The healthy cell is on the left, whereas the cells from a person with ME/CFS is on the right.

A further compensatory pathway used by patients (according to this model) is the production of ATP from ADP by the enzyme creatine kinase (figure 6). This is another way that we have on our cells to produce ATP in the cytosol without the help of mitochondria. In this model of ME/CFS, there is an increase in the use of this pathway, which leads to a decrease in cellular concentration of phosphocreatine and an increase in the cellular concentration of creatine (figure 7).

creatine kinase
Figure 6. The reaction catalyzed by creatine kinase: a molecule of ADP has converted to ATP thanks to the phosphate group carried by phosphocreatine.
half minute 4.png
Figure 7. The concentration of phosphocreatine in the cytosol of skeletal muscle cells is lower in ME/CFS (right) versus control (left) during and after exercise. This is due to the greater use of this molecule to produce ATP anaerobically in ME/CFS metabolism vs control. Parameters for this simulation are the same as described in figure 3.

Comparison with available metabolic data

I am curious to see if data from the various metabolomic studies done after the publication of the model by Lengert and Drossel are in agreement with it. I will discuss this topic in another article because I still have to study this aspect. I would just point out that if we assumed true the high rate of IMP degradation proposed in this model, we would probably find a high level of hypoxanthine in the blood of patients, compared to controls, whereas this metabolite is decreased in patients, according to one study (Armstrong CW et al. 2015).

Comparison with the model by Phair

The metabolic model by Robert Phair will probably give a more accurate simulation of energy metabolism of patients if compared with the system of ordinary differential equations that we have discussed in this article. And there are two reasons for that. The first one is that Phair has included equations also for fatty acid beta-oxidation, pentose phosphate pathway, and NAD synthesis from vitamin niacin. The other one is that, whereas the two German physicists reduced the velocities of all the enzymatic reactions that happen in mitochondria, Phair has genetic data for every enzyme involved in these reactions for a group of ME/CFS patients and thus he can determine and set the actual degree of activity for each enzyme. But there is a further level required in order to bring the mathematical simulation closer to the reality: gene expression. We know, for instance, that in ME/CFS patients there is a higher than normal expression of aconitase (an enzyme belonging to the TCA cycle) and of ATP synthase (Ciregia F et al 2016) and this should be taken into account in a simulation of ME/CFS patients energy metabolism. Note that ATP synthase is exactly the enzyme that Phair has found to be genetically damaged in patients, and this makes perfect sense: if an enzyme has a reduced activity, its reaction can be speeded up by expressing more copies of the enzyme itself.

One could expect that, in a near future, genetic data and gene expression data from each of us will be used to set mathematical models for metabolic pathways, in order to build a personalized model of metabolism that might be used to define, study and correct human diseases in a personalized fashion. But we would need a writer of sci-fiction in order to tell this chapter of the future of medicine.

 


Donate

Consider supporting this website with a donation.

€1,00

 

Three new possible autoepitopes in ME/CFS

Paolo Maccallini

Abstract

I have performed a set of analysis on experimental data already published about autoimmunity to muscarinic receptors in ME/CFS. My predictions are that extracellular loop 2 and 3, and also transmembrane helix 5 of both muscarinic cholinergic receptors 4 and 3, are main autoantigens in a subset of ME/CFS patients. Moreover, I have found that autoimmunity to M4 and M3 ChR is independent of autoimmunity to beta 2 adrenergic receptor, also reported in ME/CFS patients.  

Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by cognitive deficits, fatigue, orthostatic intolerance with symptoms exacerbated after exertion (post-exertional malaise, PEM) (IOM, 2015). This disease has no known cause but several abnormalities have been observed in energy metabolism (Tomas C. and Newton J. 2018), immune system, gut flora (Blomberg J. et al. 2018), brain (Zeineh MM. et al. 2014). A possible role for autoantibodies in the pathogenesis of the disease has been suggested by the finding of reactivity of patient sera to two nuclear antigens (Nishikai, et al., 1997), (Nishikai, et al., 2001), to cardiolipin (Hokama, et al., 2009), to HSP60 (Elfaitouri A. et al. 2013), and to muscarinic cholinergic (M ChR) and beta adrenergic receptors (ß AdR) (Tanaka S et al. 2003), (Loebel M et al. 2016); reactivity that was significantly elevated when compared to healthy contols. Reactivity to adrenergic and muscarinic Ch receptors has been confirmed by two independent groups, but these results have not been published yet (R). A role for autoantibodies in at least a subgroup of patients has also been suggested by a response to rituximab, a CD20 B cells depleting agent (Fluge Ø. et al. 2011), (Fluge Ø. et al. 20115), and to immunoadsorption (Scheibenbogen C. et al 2018). Sera response to muscarinic cholinergic receptors is confirmed in two studies but both of them used an immune assay with proteins coated on a plate. This kind of test does not allow to identify the exact autoepitope on the receptor and – even more importantly – it is subjected to false positive results because it exposes to sera surfaces of receptors that are hidden when they are in their physiological position (Ramanathan S et al 2016). Nevertheless, the amount of data provided in the study by Loebel et al. where reactivity of sera to 5 subtypes of muscarinic cholinergic receptors have been measured simultaneously, has – in our opinion – the potential to unveil the exact autoepitope(s). Thus, I performed a bioinformatical analysis on experimental data from this study in order to extract hidden information. I used a software for the in silico study of B cell epitope cross-reactivity (Maccallini P. et al. 2018) and a software for amino acid protrusion index calculation (Ponomarenko J. et al., 2008).  Our prediction is that patients sera mainly react to three epitopes that belong to the second and third extracellular loop of M3 and M4 ChR, but also to a hidden epitope of the same two receptors, leading to possible false positive results of this test. I have also found that the reactivity to beta 2 adrenergic receptor (ß2 AdR) found in the study by Loebel et al. is not due to the same antibody that reacts to muscarinic cholinergic receptors.

Methods

Search for cross-reactive epitopes. Cross-reactivity between muscarinic cholinergic receptors M4 and M3, and between M4 and M1 has been studied in silico using EPITOPE, a software already described (Maccallini P. et al. 2018). Briefly, EPITOPE searches for cross-reactive epitopes shared between two proteins (let’s say protein A and protein B) by comparing each possible 7-mer peptide of A with each possible 7-mer peptide of B. The comparison is made using the algorithm by Needleman and Wunsch (Needleman SB. and Wunsch CD. 1970)  with a gap model a + b·x, where a is the opening gap penalty, b is the extending one, and x is the extension of the gap. A penalty for gaps at the end of the alignment was also assumed. The choice for gap penalties and substitution matrix were done according to the theory already developed for peptide alignments (Altschul SF. 1991), (Karlin S. and Altschul SF. 1990). Available experimental data on cross-reactivity between γ enolase and α enolase (McAleese SM. et al. 1988)  have been used for EPITOPE calibration: a score >60 was considered the cut-off for cross-reactivity, a score below 50 indicates non-cross-reactive epitopes; a score between 50 and 60 defines a borderline result. A simpler version of EPITOPE has been used for single local alignments. The main program used for M4-M3 comparison, its subroutine NeWalign and the substitution matrix employed are available for download. Primary structures used in this work have been downloaded from UniProt and are the following ones: M1 ChR (P11229), M3 ChR (P20309), M4 ChR (P08173), B2 AdR (P07550).

Surface exposure. In order to select only those 7-mer peptides that are on the surface of proteins, I have considered their mean protrusion indexes. A protrusion index of at least 0.5 has been considered the cut-off for surface exposure. Protrusion indexes of single amino acids have been calculated with ElliPro. A protrusion index of 0.5 means that the amino acid is outside the ellipsoid of inertia which includes 50% of the centers of mass of all the amino acids of the protein (Ponomarenko J. et al., 2008). For M4 ChR I have used the crystal structure 5DSG (Thal DM. et al. 2016). The 3D structure of human M3 ChR has not been experimentally determined yet, so I have used a theoretical model built using murine M3 ChR (PDB ID: 4DAJA) as a template, provided by ModBase.

M ChR plot
Figure 1. The position of the first amino acid of each possible 7-mer peptide of M4 ChR is reported on the abscissa, the score for the comparison of each of these peptides with M1 ChR (blue line) and M3 ChR (orange line) is reported on the ordinate. N terminus, extracellular loop 1, 2 and 3 are also indicated. Scores above the yellow line indicate cross-reactivity, scores below the blue line indicate a lack of cross-reactivity.

Selection criteria. Our purpose is to predict to what epitopes of M3 and M4 ChRs sera from ME/CFS patients react. So I search for M4 ChRs 7-mer peptides that are cross-reactive to M3 ChR, but non-cross-reactive to M1 ChR. Moreover, they have to present surface exposure both on M4 and on M3 ChR (otherwise antibodies can’t reach them). So, selection criteria for M4 ChR epitopes are as follows:

  1. they have to be cross-reactive to M3 ChR;
  2. they have to be non-cross reactive to M1 ChR or borderline;
  3. they have to present a mean protrusion index ≥0.5;
  4. M3 ChR peptides to which thy cross-react have to present a mean protrusion index ≥0.5.

We will refer to strict criteria when we assume only non-cross-reactivity in 2, while weak selection criteria are fulfilled when M4 ChR epitopes have borderline reactivity to M3 Chr peptides.

M4 vs M1, M3
Figure 2. Distribution of the scores from the comparison of M4 ChR with M1 ChR (left) and with M3 ChR (right). M3 ChR presents a slightly higher mean score.

Results

The search for 7-mer peptides of M4 ChR that are cross-reactive to M3 ChR found 108 sequences. We then studied cross-reactivity to M1 ChR for each of these peptides and we found that 11 of them are non-cross-reactive and that other 9  peptides have borderline reactivity. None of these 20 peptides presented a cross-reactivity to B2 AdR (Table 1S, column 1). Scores between peptides of M4 ChR and the other two muscarinic cholinergic receptors are plotted in Figure 1. The distribution of scores from the comparison of M3 ChR with M1 ChR and with M3 ChR are reported in Figure 2. For the M4 ChR 20 epitopes mentioned above, we calculated the mean protrusion indexes and we did the same calculation for their cross-reactive peptides on M3 ChR. We also indicated their position with respect to the plasma membrane. All these data are collected in Table 2S. Once we apply selection criteria on these 20 peptides, we obtain 9 epitopes (Table 1). Of these selected epitopes, one belongs to a transmembrane helix: peptide 186-192 of M4 ChR, which cross-reacts to peptide 231-237 of M3 ChR. Peptide 418-431 of M4 ChR is partially immersed in the plasmatic membrane, even though its cross-reactive peptide of M3 ChR is entirely exposed to the extracellular space, and the same applies to the other two epitopes found (figure 1). Peptide 175-181 of M4 ChR cross-reacts to peptide 211-217 of M3 ChR; peptide 186-192 of M4 Chr cross-reacts to peptide 222-228 of M3 ChR; peptide 418-431 of M4 Chr cross-reacts to peptide 513-522 of M3 ChR. Sequences that fulfill selection criteria and their respective inverted sequences are collected in  Table 2.

Table 1
Table 1. This is the collection of M4 Chr 7-mer peptides that are cross-reactive to M3 ChR; are not cross-reactive or borderline with M1 ChR; have a mean protrusion index higher than 0.5; are cross-reactive with epitopes of M3 ChR with a protrusion index higher than 0.5.

Discussion

B cells autoimmunity to muscarinic cholinergic receptors in ME/CFS has been reported in two studies (Tanaka S et al. 2003), (Loebel M et al. 2016) and this finding has been recently confirmed by two other independent groups who have not published yet (R). The two studies mentioned used full-length proteins coated on a plate in order to perform the immune assay. With this kind of technique we may have both false positives (due to the fact that sera react with peptides that are not in the extracellular domain) and false negatives (due to protein denaturation, which leads to the formation of epitopes that would not be present if the protein were correctly folded) as has been reported in the case of anti-MOG antibodies (Ramanathan S et al 2016). A way to solve the possible inaccuracy of these data would thus be to measure sera reactivity with a cell-based assay (CBA) which is a test where receptors are expressed by eukaryotic cells and thus they are held in their physiological position.

M4_M3_ChR_weaker
Figure 1. Peptides of table 1 that belong to the extracellular domain of M3 and M4 ChR are here highlighted directly on the 3D structures of their respective receptors.

Nevertheless, we can still try to extract hidden information from experimental data and predict the position of the epitope(s) ME/CFS patients sera react to. Knowing that sera from patients react to M4, M3 ChRs and that there is a low correlation between reactivity to M4 ChR and reactivity to M1 ChR (Loebel M et al. 2016) we selected 7-mer peptides of M4 ChR that cross-react (in silico) to M3 ChR but not to M1 ChR (Table 2S). We then selected, among them, only those peptides that have surface exposure on their respective proteins (Table 1). The result is that patient sera react to extracellular loops 2 and 3 of both M3 and M4 ChRs (Figure 1), but also to a hidden antigen, a peptide of transmembrane helix 5 of both M3 and M4 ChR.

Our results are of interest because extracellular loops 2 and 3 of M3 ChR are known autoepitopes in Sjögren’s syndrome (Ss) (Deng C. et al. 2915). Moreover, sera from patients with orthostatic hypotension (OH) react to extracellular loop 2 of M3 ChR, where they show an agonistic effect, thus acting as vasodilators (Li H. et al. 2012). OH, a form of orthostatic intolerance has been reported in ME/CFS patients (Bou-Holaigah et al. 1995) while fatigue similar to post-exertional malaise have been described in Ss (Segal B. et al. 2008). A pathogenic role of these antibodies in fatigue for both ME/CFS and Sjögren syndrome could perhaps be due to their vasodilatory effect.

Our analysis unveiled reactivity to a hidden autoepitope, which belongs to transmembrane helix 5 of M3 and of M4 ChR. This epitope is buried inside the plasma membrane when these two receptors are in their physiological position, so this reactivity can’t contribute to the pathogenesis of ME/CFS.

None of the 7-mer peptides of M4 ChR that cross-react to M3 ChR and at the same time don’t cross-react to M1 ChR presents in silico reactivity to B2 AdR. This means that in those patients whose sera present reactivity to both M4-M3 ChR and B2 AdR, there are two distinct autoantibodies. This prediction of our model is consistent with the low correlation found by Loebel and colleagues between anti-M4 ChR and anti-B2 AdR antibodies (Loebel M et al. 2016).

Most B cells epitopes on non-denaturated proteins (i.e. proteins that conserve their tertiary structure) are believed to be conformational (Morris, 2007), so a significant limitation of this study is due to the fact that our analysis considers only linear epitopes. Nevertheless, the main limitation of this study remains by far my encephalopathy.

Conclusion

This analysis of previously published data suggests a role for the second and the third extracellular loop of M4 and M3 ChR as autoantigens in ME/CFS. It also predicts the presence of a hidden autoantigen and thus a risk of false-positive results with standard ELISA.  The eight peptides found by this analysis and their inverse sequences (Table 2) should be employed as query sequences for the search for possible triggering pathogens and for other autoantigens. These predictions should be tested using both cell-based assays and ELISA tests with these 8 peptides coated on the plate.

Table 2.PNG
Table 2. Peptides belonging to M4 and M4 ChR that fulfill our selection criteria are collected on the left. On the right, their reverse sequences. These 16 peptides can be used in BLAST in order to serach for triggering pathogens and for other possible autoepitopes.

 

Supplementary material. The following two tables represent the first two steps of the analysis presented in this paper. M4 ChR 7-mer peptides that are cross-reactive to M3 ChR are collected in Table 1S, while those of them that are non-cross-reactive (or borderline) to M1 ChR are collected in Table 2S.

TableS.png
Table 1S. Peptides of M4 ChR that are cross-reactive to M3 ChR are collected in the first column. In the second column are collected the scores of these 7-mer peptides obtained from the comparison with M1 ChR. For those that obtained a score below 60, the score from the comparison with B2 AdR is reported in column 5. Positions of peptides of interest that belong to M3ChR and B2 AdR are collected in columns 4 and 6 respectively.
Table 2S.PNG
Table 2S. These 20 peptides are those M4 ChR peptides that cross-react to M3 ChR and at the same time are non-cross-reactive or borderline when compared to M1 ChR. Reactivity to B2 AdR is also indicated, as well as positions with respect to the plasma membrane and mean protrusion indexes. On the left are indicated those peptides of M4 ChR that pass the selection according to our criteria. Both a strict selection and a selection with more weak criteria are reported.

 

 

 

 

 

Is Carboxypeptidase N deficiency a contributing factor in ME/CFS and POTS?

Abstract

We present an attempt at exome analysis in two ME/CFS patients. Pt. 1 presents a mild form of carboxypeptidase N (CPN1) deficiency (a missense in exon 3) while Pt. 2 revealed two rare intronic variants in the same gene. CPN1 is an enzyme that inactivates kinins and complement proteins split products (such as C4a, a known anaphylatoxin). Therefore, CPN1 deficiency could explain C4a increase after exercise and mast cell abnormalities previously reported in ME/CFS. It could also explain the high prevalence of POTS in ME/CFS since kinins are vasodilators.

Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by cognitive deficits, fatigue, orthostatic intolerance with symptoms exacerbated after exertion (IOM, 2015). This disease has no known cause but several abnormalities have been observed in energy metabolism (Tomas C. and Newton J. 2018), immune system and gut flora (Blomberg J. et al. 2018), brain (Zeineh MM. et al. 2014). In this population of patients, several abnormalities have been found to be triggered by exercise, such as abnormal aerobic performance (Snell C. et al. 2013), enhanced gene expression of specific receptors (White AT. et al. 2012), abnormal gut flora translocation (Shukla SK et al. 2015) and failure in blood clearance of complement protein 4 split product A (C4a) (Sorensen B et al. 2003). An increase in C4a is part of the human physiologic response to physical exercise, but these levels return to baseline within 30 minutes to 2 hours (Dufaux B et al. 1991) while in ME/CFS there is a peak in serum C4a six hours after exertion. A possible explanation for slow C4a inactivation could be a problem in carboxypeptidase N (CPN1), an enzyme involved in the inactivation of C3a, C4a, C5a. CPN1 is required for kinins inactivation too, such as bradykinin, kalladin (Hugli T. 1978), (Plummer TH et Hurwitz MY 1978), that are vasodilators. We report on the case of a ME/CFS patient (Pt. 1) with a missense variant in CPN1 gene that is linked to reduced function of the enzyme and of another ME/CFS patient (Pt. 2) with rare variants in introns 1 and 6 of the same gene with uncertain significance (table 1, figure 1).

Table 1.PNG
Table 1. This is a collection of the variants within gene CPN1 found in Pt. 1 and 2. The verdict is the one given by VarSome. A damaging SNP present in exon 3 of CPN1 from Pt. 1 and two rare SNPs found in intron 1 and intron 6 of CPN1 from Pt. 2 are highlighted in orange.
Cattura.PNG
Figure 1. SNPs and InDels along gene CPN1 found in Pt. 1 (first row) and Pt. 2 (second row) as reported by IGV.

Materials and Methods

Whole exome sequencing (WES) has been performed on cells from the saliva of two ME/CFS patients, with an average 100X coverage (Dante Labs). The first search for pathogenic variants and insertions/deletions was performed with the software EVE, provided by Sequencing.com. A further refinement of the search was conducted by manual insertion of these SNPs in VarSome. The search for possible unknown pathogenic variants within the gene for CPN1 has been performed using Integrative Genome Viewer (IGV), an opensource tool for genetic data analysis.

Results

Results from the analysis of the two exomes performed with EVE and refined with VarSome are collected in table 2 (Pt. 1) and table 3 (Pt. 2).

Pt. 2 is carrier of a mitochondrial disease (table 3, first line): a missense in gene for medium-chain acyl-CoA dehydrogenase (MCAD) which leads to mild functional impairment of the enzyme involved in the oxidation of fatty acids (44% residual activity) (Koster KL. et al. 2014).

Pt. 2 is also homozygous for a variation in gene arylsulfatase A (ARSA) that is linked to a residual activity of only 10% of normal (Gomez-Ospina N. 2010). Arylsulfatase A deficiency (also known as metachromatic leukodystrophy or MLD) is a disorder of impaired breakdown of sulfatides (cerebroside sulfate or 3-0-sulfo-galactosylceramide), sulfate-containing lipids that occur throughout the body and are found in greatest abundance in nervous tissue, kidneys, and testes. Sulfatides are critical constituents in the nervous system, where they comprise approximately 5% of the myelin lipids. Sulfatide accumulation in the nervous system eventually leads to myelin breakdown (leukodystrophy) and a progressive neurologic disorder (Von Figura et al 2001). Nevertheless, this genotype does not cause MLD, and this benign condition of reduced ARSA activity is called ARSA pseudodeficiency. There are about 4 homozygotes in 1000 persons among non-Finnish Europeans (VarSome)

Pt. 1 is a carrier of a missense in gene CPN1 (table 2, first line) which leads to a loss of more than 60% of activity, according to a study on a single patient (Mathews KP. et al. 1980), (Cao H. et Hegele RA. 2003). The study of gene CPN1 in both patients (using IGV) has led to the identification of two rare variants (frequency less than 0.002) in intron 1 and 6 of one allele from Pt. 2 (table 1, figure 1). In MCAD no other damaging variations have been identified in these two patients by direct inspection with IGV (data not shown).

 

exome 1
Table 2. Possible pathogenic variants found in exome from Pt. 1.
exome 2.PNG
Table 3. Possible pathogenic variants found in exome from Pt. 2.

Discussion

Whole exome sequencing (WES) is a technique that aims at the sequencing of the fraction of our genome that encodes for proteins: about 30 million base pairs (1% of the all the human DNA) divided into about 20 thousand genes (Ng SB et al. 2009). It has become increasingly clear that the use of WES can positively improve the rate of diagnosis and decrease the time needed for a definitive diagnosis in patients with rare genetic diseases (Sawyer SL et al. 2016). WES also positively impacts the ability to discover new pathogenic variants in known disease genes (Polychronakos C. et Seng KC. 2011) and the discovery of completely new disease genes (Boycott KM 2013). ME/CFS seems to have a genetic component: a US study found clear evidence of familial clustering and elevated risk for the disease among relatives of ME/CFS cases (Albright F et al. 2011) and several SNPs in various genes have been reported as more prevalent in ME/CFS patients versus healthy controls (Wang T et al. 2017). And yet, no studies that analyzed whole exomes of ME/CFS patients have been published, to my knowledge.

In this study, we searched for known genetic diseases in the exomes of two ME/CFS patients who fit the IOM criteria for SEID (IOM, 2015), with postural orthostatic tachycardia syndrome (POTS) identified by positive tilt table test. We detected a missense variant in CPN1 (rs61751507) in Pt. 1 (heterozygosis) that has been associated to a loss of activity of the enzyme of at least 60% in a previous study (Mathews KP. et al. 1980), (Cao H. et Hegele RA. 2003). We then found that, although Pt. 2 was not a carrier of this SNP, she had two rare SNPs in intron 1 (rs188667294) and 6 (rs113386068) of gene CPN1 (both present in less than 1/500 alleles, table 1, figure 1). These intronic variations have not been studied, to our knowledge, so their pathogenicity can’t be excluded at present. Variations in introns can be damaging just as missense and nonsense mutations in exons; suffice to say that the main known pathogenic SNP of gene CPN1 is a substitution in intron 1 (Cao H. et Hegele RA. 2003).

Carboxypeptidase N (CPN1) is an enzyme involved in the inactivation of C3a, C4a, C5a, and of kinins (bradykinin, kalladin) (Hugli T. 1978), (Plummer TH et Hurwitz MY 1978). In ME/CFS the physiologic increase in blood of C4a (the split product of the complement protein C4) after exercise is significantly more pronounced than in healthy controls as if there was a defect in C4a inactivation (Sorensen B et al. 2003). Such a defect could very well be a loss of function in CPN1, as found in Pt 1. Moreover, CPN1 is involved in inactivation of bradykinin, which is known to induce vasodilatation (Siltari A. et al. 2016), therefore CPN1 deficiency could play a role in POTS and in orthostatic intolerance in general. Both patients have a tilt table test positive for POTS. C4a has been recently considered to play a causal role in the cognitive deficit of schizophrenia, because of its role in synapsis pruning (Sekar, A et al, 2016); therefore a failure in its inactivation could be implicated in the incapacitating cognitive defects lamented by ME/CFS patients.

Only two patients with CPN1 deficiency have been reported so far in medical literature (Mathews KP. et al. 1980), (Willemse Jl et al. 2008), and the enzymatic defect has been associated to angioedema that most often involved the face and tongue, urticaria, and hay fever and asthma precipitated by exercise. This clinical presentation could be due, at least in part, to mast cell activation: in fact, C4a is a known anaphylatoxin that induces mast cells degranulation and release of histamine (Erdei A. et al. 2004). That said, we can observe that even if the clinical presentation of the only two known cases of CPN1 deficiency doesn’t fit the clinical picture of ME/CFS, mast cell activation syndrome (MCAS) has some commonalities with ME/CFS (Theoharides, TC et al. 2005), and mast cell abnormalities have been reported among ME/CFS patients (Nguyen T. et al. 2016). So we can’t exclude that activation of mast cells by a failure in C4a inactivation may lead to ME/CFS symptoms. The role of exercise as a trigger for symptoms in CPN1 deficiency is also highly suggestive because this is a pathognomonic feature of ME/CFS.

Conclusion

CPN1 deficiency is present (even if in a mild form) in Pt. 1, while Pt. 2 presents two rare intronic variants whose pathogenic role can’t be excluded. CPN1 deficiency could explain the abnormal increase of C4a after exercise and might be a contributing factor to post-exertional malaise and cognitive symptoms in ME/CFS. A search for pathogenetic SNPs in gene CPN1 among ME/CFS patients would clarify the role (if any) of this gene.

 

Acknowledgments. I would like to thank Chiara Scarpellini for her careful collection of annotations for each of the 2 hundred or so variants found by EVE within the exomes of Pt. 1 and Pt. 2 (table 2 and table 3).


Donate

Consider supporting this website with a donation.

€1,00

Mark Davis and the search for the universal immune test

Mark Davis and the search for the universal immune test

A traslation of this blog post to Spanish can be downloaded here. I would like to thank Humbert.Cat for the translation.

1. Introduction

These are some notes about the talk that Mark Davis gave during the Community Symposium held in August at Stanford (video). I will introduce some basic notions about T cell receptors (TCR) in paragraphs 2, 3, 4, and 5. Paragraphs 6 is a description of an innovative technology developed by Mark Davis and his colleagues, based on information gathered from the video itself and three research papers published by Davis and others in the last 4 years. This background should be hopefully enough to allow a good understanding of the exciting pilot data presented by Mark Davis on T cell activity in ME/CFS (paragraph 7), and in chronic Lyme (paragraph 8), and to realize why this technology promises to be some sort of universal test for any kind of infectious and autoimmune diseases, known or unknown.

2. T cells

T cells are a type of leukocytes (also known as white blood cells), the cellular component of our immune system. Most of our circulating T cells are represented by T helper cells (Th cells) and cytotoxic T lymphocytes (CTL). While the function of Th cells is to regulate the activity of other leukocytes through the production of a wide range of chemicals (cytokines), CTLs are directly involved in the killing of host cells infected by pathogens. T cells belong to the adaptive arm of the immune system, along with B cells (the factories of antibodies), and as such, they are meant to provide a defence tailored to specific pathogens: our immune system can provide not only antibodies specific for a given pathogen but also specific T cells (both Th cells and CTLs). The innate arm of the immune system (which includes natural killer cells, macrophages, dendritic cells, mast cells…) on the other hand can provide only a one-fits-all type of defense, which represents the first line of immune response, during an infection.

3. T cell receptor

T cells search for their specific pathogens thanks to a molecule expressed on their surface, called T cell receptor (TCR). In figure 1 you can see a schematic representation of the TCR and of the mechanism by which T cells recognize their targets. Antigens (proteins) from pathogens are presented to T cells by other cells of our body: they are displayed on molecules called major histocompatibility complex (MHC), expressed on the outer membrane; if the antigen fits the TCR of a specific T cell, then this T cell is activated and proliferates (clonal expansion). The two chains (α and β) are assembled using the transcription of gene segments with several copies each: in other words, TCRs are assembled with peptides chosen randomly within a set of several possible choices. This leads to a repertoire of 10^15 possible different TCRs (Mason DA 1998). Each T cell displays only one type of TCR.

TCR
Figure 1. Upper half. Th cells and CTLs share the same TCR: in both cases this molecule is the assembly of two peptides (chain α and chain β), but while the TCR of Th cells (on the right) is expressed next to the molecule CD4 (which binds to class II MHC), the TCR of CTL is associated with the molecule CD8 (on the left), which is specific for MHC I. Black bars represent four chains (a complex called CD3) that are involved in the signaling of the TCR with the nucleus of the cell (by Paolo Maccallini). Lower half. A beautiful structural representation of the TCR, bound to the peptide-MHC complex (pMHC), from (Gonzàlez PA et al. 2013). In green the peptide, in blue the β chain, in dark green the α chain. CDRs (complementarity determining regions, orange) are composed of those residues of the α and β chains that directly bind the pMHC.

4. T helper cells

Th cells can recognize only antigens presented by class II MHC: this class of MHC is expressed on the outer membrane of some leukocytes, mainly dendritic cells, B cells, and macrophages (referred to as antigen presenting cells, APCs). MHC II engages the TCR of Th cells thanks to peptide CD4 (expressed exclusively by Th cells). The antigen presented by MHC II is a peptide with a length of 13-17 amino acids (Rudensky, et al., 1991) (figure 2).

MHC II.JPG
Figure 2. The TCR expressed by a Th cell binds an epitope presented by a class II MHC expressed on the plasma membrane of an APC. Chains α and β of MHC II are also represented (by Paolo Maccallini).

5. Cytotoxic T lymphocytes

TCRs expressed by CTLs can bind only antigens displayed by class I MHC, which can be found on the outer membrane of any cell of our body. CD8 is the molecule that makes the TCR expressed by CTLs specific for MHC I. While antigens presented by APCs belongs to pathogens that have been collected on the battlefield of the infection, peptides displayed by class I MHC of a specific cell belong to pathogens that have entered the cell itself, therefore they are the proof of an ongoing intracellular infection (figure 3). When a CTL recognizes an antigen that fits its TCR, then the CTL induces apoptosis (programmed death) of the cell that displays it. Antigens presented by MHC I are peptides in the range of 8 to 10 amino acids (Stern, et al., 1994).

MHC I.JPG
Figure 3. An infected cell displays a viral antigen on its MHC I. The TCR of a CTL binds this peptide and send a signal to the nucleus of the CTL itself, that responds with the induction of apoptosis (releasing granzymes, for instance) of the infected cell (by Paolo Maccallini).  

6. The universal immune testing

In his talk, Mark Davis presents an overview of some basic concepts about the immune system, before introducing his exciting new data about ME/CFS and post-treatment Lyme disease syndrome (PTLDS, also known as chronic Lyme). But he also describes a few details of a complex new assay that is theoretically able to read all the information packed in the repertoire of TCRs present – in a given moment – in the blood of a human being. As such, this test – that I have named the universal immune testing – seems to have the potential to determine if a given patient has an ongoing infection (and the exact pathogen) or an autoimmune disease (and the exact autoantigen, i.e. the tissue attached by the immune system). To my understanding, this assay requires three steps, described in the following sections.

6.1. First step: TCR sequencing

As said in paragraph 3, when T cells encounter their specific peptide presented by MHC, they proliferate so that in blood of patients with an ongoing infection (or with a reaction against self, i.e. autoimmunity) we can find several copies of T cells expressing the same TCR: while in healthy controls about 10% of total CD8 T cells is represented by clones of a few different T cells (figure 4, first line), in early Lyme disease – an example of active infection – and in multiple sclerosis (MS) – an example of autoimmune disease – we have a massive clonation of a few lines of CTLs (figure 5, second and third line, respectively). The first step of the universal immune testing is represented by the identification of the exact sequence of TCRs expressed by T cells in blood, as reported in (Han A et al. 2014) where it is described how to sequence genes for the α and the β chain of a given T cell. This approach allows to build graphs of the kind in figure 4, and therefore to determine whether the patient has an abnormal ongoing T cell activity or not. If a clonal expansion is found, then we can speculate that either an active infection is present or some sort of autoimmune condition.

Clonal expansion CD8.png
Figure 4. Each circle represents a patient. In the first line, we have four healthy controls, with no clonal expansion of CD8 T cells (the first one, left) or with only a low-level clonal expansion (slices in blue, white, and grey). In the second line, we have four patients with active Lyme disease (early Lyme) and all of them present a massive expansion of only three different T cells (slices in red, blue and orange). In the third line, we have four MS patient with most of their CD8 T cells represented by clones of a bunch of T cells. From the talk by Mark Davis.

6.2. Second step: TCR clustering

Mark Davis and his group have been able to code a software that allows to identify TCRs that share the same antigen, either within an individual or across different donors. This algorithm has been termed GLIPH (grouping of lymphocyte interaction by paratope hotspots) and has been found capable – for instance – to cluster T CD4 cell receptors from 22 subjects with latent M. tuberculosis infection into 16 distinct groups, each of which comprises TCRs from at least 3 different donors (Glanville J et al. 2017). Five of these groups are reported in figure 5. The idea here is that TCRs that belong to the same cluster, react to the same peptide-MHC complex (pMHC).

GLIPH.jpg
Figure 5. Five group of TCRs from 22 different donors with latent tuberculosis, clustered by GLIPH. The first column on the left has TCRs IDs, the second one reports donors IDs. Complementarity determining regions (CDR) for the β and the α chains are reported in the third and fifth column, respectively. From (Glanville J et al. 2017).

6.3. Third step: quest for the epitope(s)

As we have seen, this new technology allows to recognize if T cell clonal expansion is an issue in a given patient, by sequencing TCRs from his peripheral blood. It also allows to cluster TCRs either within an individual or across different patients. The next step is to identify what kind of antigen(s) each cluster of TCRs reacts to. In fact, if we could recognize these antigens in a group of patients with similar symptoms, with T cell clonal expansion and similar TCRs, we would be able to understand whether their immune system is fighting a pathogen (and to identify the pathogen) or if it is attacking host tissues and, if that was the case, to identify what tissue. As mentioned, the number of possible TCR gene rearrangement is supposed to be about 10^15, but the number of possible Th cell epitope is about 20^15 which is more than 10^19. This implies that TCRs have to be cross-reactive to some extent, in order to recognize all possible peptides presented by MHCs (Mason DA 1998). The exact extent of this cross-reactivity and the mechanism by which it is obtained has been elucidated by Mark Davis and his colleagues in a recent paper (Birnbaum ME et al. 2014) that gives us the third step of the universal immune testing. The aim of this phase is to take a given TCR and to find the repertoire of his specific antigens (as said, one TCR reacts to several antigens). In order to understand how this is possible let’s consider one of the experiments described in the paper mentioned above. The researchers considered two well-defined TCRs (named Ob.1A12 and Ob.2F3), cloned from a patient with MS and known to recognize peptide 85-99 (figure 6) of myelin basic protein (MBP) presented by HLA-DR15. They then prepared a set of yeast cells expressing HLA-DR15 molecules, each presenting a different peptide of 14 amino acids, with fixed residues only at position 1 and 4, where the peptide is anchored to MHC (figure 6, left). When copies of Ob.1A12 are added to this culture of yeast cells expressing pMHC complexes, they bind only some of them, and as you can see in the right half of figure 6, for each position of the epitopes bound by Ob.1A12, there is an amino acid that is more likely: for instance, the typical epitope of Ob.1A12 preferentially has alanine (A) at position -4, histidine (H) at position -3, arginine (R) at position -2, and so forth. As you can see, histidine (H) at position 2 and phenylalanine (F) at position 3 are obligate amino acids for a Ob.1A12 epitope.

ob-1a121.jpg
Figure 6. On the left: peptide 85-99 of myelin basic protein (first row) is known to be an epitope for Ob.1A12. At position 1 and 4 it has two residues that allow its binding to the MHC molecule. At position -2, -1, 2, 3, and 5 we find those residues that bind the TCR. The second row represents the generic epitope of the peptide library used to identify the degree of crossreactivity between all the possible Ob.1A12 specific epitopes. On the right: the likelihood of amino acids for each position of Ob.1A12 specific epitopes is represented by shades of violet. As you can see, histidine (H) at position 2 and phenylalanine (F) at position 3 are obligate amino acids for a Ob.1A12 epitope. From (Birnbaum ME et al. 2014).

The table on the right side of figure 6 is, in fact, a substitution matrix with dimension 14×20, a tool that can be used to scan the peptide database in order to find, among all the known peptides expressed by living creatures, all the possible Ob.1A12 specific epitopes. Substitution matrices are commonly used for the so-called peptide alignment, a technique that aims at the identification of similarities between peptides. These matrices are based on evolutionary considerations (Dayhoff, et al., 1978) or on the study of conserved regions in proteins (Henikoff, et al., 1992). But the search for specific epitopes of a given TCR requires (as we have seen here for Ob.1A12) a substitution matrix built ad hoc for that TCR: each TCR requires its own substitution matrix that is obtained adding clones of that TCR on a culture of yeast cells presenting a huge peptide library on their MHCs, and analyzing data from this experiment. So, quite a complex process! In the case of Ob.1A12, this process led to 2330 peptides (including MBP), while the Ob.2F3 specific substitution matrix found 4824 epitopes within the whole peptide database. These peptides included both non-human proteins (bacterial, viral…) and human peptides. For 33 of them (26 non human and 7 human proteins), this group of researchers performed a test in order to directly verify the prediction: 25/26 of environmental peptides and 6/7 of the human peptides induced proliferation of T cells expressing Ob.1A12 and/or Ob.2F3, and this is a huge proof of the validity of this analysis! These 33 peptides are reported in figure 7. This is the last step of the universal immune testing, the one that from the TCR leads to the epitopes. As you have seen, a huge set of different peptides from different sources is linked to each single TCR, in other words, crossreactivity is an intrinsic property of TCR. This also means that lymphocyte transformation tests (LTTs), widely used in Europe for the detection of infections like Borrelia burgdorferi and others, bear a high risk of false-positive results and require a process of experimental and theoretical validation, that is currently lacking (see also this post on this issue).

Crossreactive epitopes.JPG
Figure 7. A set of 33 peptides (both human and environmental) predicted to be specific epitopes for both Ob.1A12 and Ob.2F3. From (Birnbaum ME et al. 2014).

We are now ready to fully appreciate the pilot data that Mark Davis presented at the Symposium on CD8 T cell clonal expansion in ME/CFS and in chronic Lyme.

7. We have a hit!

Mark Davis, along with Jacob Glanville and José Montoya, has sequenced TCRs from the peripheral blood of 50 ME/CFS patients and 49 controls (first step of the universal immune testing, remember?), then they have clustered them using the GLIPH algorithm (second step). They have found 28 clusters with more than 2500 similar sequences each, where each cluster collects multiple sequences from the same individual as well as (which is perhaps more important) sequences from different patients (figure 8). The cluster that I have circled in red, for instance, is a collection of more than 3000 similar TCRs. The presence of this wide clusters in ME/CFS patients, compared to healthy controls, represents an indirect proof of a specific T cell response to some common trigger in this group of patients, which might be a pathogen or a tissue of the body (or both).

Clustered TCR
Figure 8. In ME/CFS, TCRs sequences from 50 patients form 28 clusters with more than 2500 similar sequences, and this is clearly not the case in healthy controls. This point to some specific immune response to a pathogen or to a human tissue (or both). This slide is from the talk by Mark Davis.

Among these 50 ME/CFS patients, Davis and colleagues selected 6 patients with similar HLA genes (figure 9, left), 5 females among them, and studied their TCRs deeper. In the right half of figure 9, you can see for each patient the degree of CTL clonal expansion. Remember that in healthy controls only about 10% of CTLs is composed by clones of a few cells (figure 4, first raw), while here we see that about 50% of all CTLs is composed by clones. So, a “marked clonal expansion” of CD8 T cells, as Davis said.

ME subjects CD8
Figure 9. On the left: 6 MECFS patients with similar HLA genes have been selected. Patient ID is reported in the first column on the left, the second column indicates the age of each patient, the third indicates the gender, the fourth column is about exposure to cytomegalovirus, the third one is on MHC I genes. On the right: analysis of clonal expansion of CD8 T cells for each of the six patients. There is a marked clonal expansion (about 50%) compared to healthy controls (about 10%).

Sequences of α and β chains of TCRs from three of the six patients (patients L4-02, L4-10, and L3-20) are reported in figure 10 (I have verified that in fact these are sequences of α and β chains of human TCRs using them as query sequences in standard protein BLAST).

TCR epitope.png
Figure 10. Beta chains (first column) and respective α chains (fifth column) from 3 ME/CFS patients (L4-02, L4-10, and L3-20, last column).

So, we have seen so far the first two steps of the universal immune testing in ME. What about the third step? In his talk, Mark Davis didn’t present any particular epitope, he just showed a slide with what likely is the selection of the epitopes from the peptide library (see paragraph 6.3) by one of the TCRs reported in figure 10. This selection is reported in figure 11, but from that picture, it is not possible to gather any information about the identity of these epitopes. As you probably remember from paragraph 6.3, the analysis of the peptides selected by a TCR among the peptide library allows the identification of a substitution matrix that can be used to select all the possible epitopes of that specific TCR, from the peptide database. This last crucial step has to be performed yet, or it has been already performed, but Davis has not communicated the preliminary results during his talk. Recently new resources have been made available by Open Medicine Foundation, for this promising research to be further pursued, among other projects (R). The aim here, as already said, is to find the antigen that triggers this T cell response. As Mark Davis said, it might be an antigen from a specific pathogen (perhaps a common pathogen that comes and goes) that elicits an abnormal immune response which ends targeting some host tissue (microglia, for instance), thus leading to the kind of immune activation that has been recently reported by Mark Davis himself and others in ME/CFS (Montoya JG et al. 2017). The idea of a common pathogen triggering a pathologic immune response is not new in medicine, and rheumatic fever (RF) is an example of such a disease: RF is an autoimmune disease that attacks heart, brain and joints and is generally triggered by a streptococcal throat infection (Marijon E et al. 2012). The other possible avenue is, of course, that of an ongoing infection of some kind, that has yet to be detected. As said (see par. 6.1), CD8 T cell clonal expansion is present in both acute infections (like early Lyme disease) and autoimmune diseases (like MS) (figure 4), so we have to wait for the antigen identification if we want to understand if the CTLs activity is against a pathogen and/or against a host tissue.

peptide-library.png
Figure 11. In this picture, we can see the selection, through several rounds, of a bunch of peptides by a particular TCR from a ME patient. The selection takes place among a huge collection of peptides presented by HLA-A2 (MHC I) expressed by yeast cells. At each round the number of possible peptides is smaller.

8. Chronic Lyme does exist

It has probably been overlooked that in his talk, Mark Davis reported also very interesting data on post-treatment Lyme disease syndrome (PTLDS, also known as chronic Lyme disease). In particular, he found a marked clonal expansion in CD8 T cells of 4 PTLDS patients (about 40% of total CTLs) as reported in figure 12: consider that in this case, blue slices represent unique T cells, while all the other slices represent clones! All that has been said about CD8 clonal expansion in ME/CFS does apply in this case too: it might be the proof of an ongoing infection – perhaps the same B. burgdorferi, as suggested by several animal models (Embers ME et al. 2017), (Embers ME et al. 2012), (Hodzic E et al. 2008), (Yrjänäinen H et al. 2010) – or a coinfection (a virus?) or it could be the expression of an autoimmune reaction triggered by the initial infection. This has still to be discovered, running the complete universal immune testing, but what is already clear from figure 12 is that PTLDS is a real condition, with something really wrong going on within the immune response: chronic Lyme does exist.

ptlds-cd8.jpg
Figure 12. CD8 T cells clonal expansion in four chronic Lyme patients: there is a marked clonal expansion that stands for T cell activity against a pathogen or against host tissue.

9. Conclusions

Mark Davis and other researchers have developed a complex assay that is able to sequence TCRs from patients, cluster them into groups of TCRs that react to the same antigens, and discover the antigens that triggered that particular T cell response. This assay is a kind of universal immune testing that is theoretically able to recognize if a person (or a group of patients) presents an immune response against a pathogen or against one of his own tissues (or both). This approach has already given pilot data on an ongoing CD8 T cell activity in ME/CFS patients and in chronic Lyme patients and will hopefully identify the trigger of this immune response in the near future. Whether ME/CFS is an ongoing infection, an autoimmune disease or both, the universal immune testing might be able to tell us. This new technology is for immunology, what whole genome sequencing is for genetics, or metabolomics is for molecular diseases: it doesn’t search for a particular pathogen or a particular autoimmune disease. No, it searches for all possible infections and immune disorders, even those that have yet to be discovered.


Donate

Consider supporting this website with a donation.

€1,00