Mark Davis and the search for the universal immune test

Mark Davis and the search for the universal immune test

A traslation of this blog post to Spanish can be downloaded here. I would like to thank Humbert.Cat for the translation.

1. Introduction

These are some notes about the talk that Mark Davis gave during the Community Symposium held in August at Stanford (video). I will introduce some basic notions about T cell receptors (TCR) in paragraphs 2, 3, 4, and 5. Paragraphs 6 is a description of an innovative technology developed by Mark Davis and his colleagues, based on information gathered from the video itself and three research papers published by Davis and others in the last 4 years. This background should be hopefully enough to allow a good understanding of the exciting pilot data presented by Mark Davis on T cell activity in ME/CFS (paragraph 7), and in chronic Lyme (paragraph 8), and to realize why this technology promises to be some sort of universal test for any kind of infectious and autoimmune diseases, known or unknown.

2. T cells

T cells are a type of leukocytes (also known as white blood cells), the cellular component of our immune system. Most of our circulating T cells are represented by T helper cells (Th cells) and cytotoxic T lymphocytes (CTL). While the function of Th cells is to regulate the activity of other leukocytes through the production of a wide range of chemicals (cytokines), CTLs are directly involved in the killing of host cells infected by pathogens. T cells belong to the adaptive arm of the immune system, along with B cells (the factories of antibodies), and as such, they are meant to provide a defence tailored to specific pathogens: our immune system can provide not only antibodies specific for a given pathogen but also specific T cells (both Th cells and CTLs). The innate arm of the immune system (which includes natural killer cells, macrophages, dendritic cells, mast cells…) on the other hand can provide only a one-fits-all type of defense, which represents the first line of immune response, during an infection.

3. T cell receptor

T cells search for their specific pathogens thanks to a molecule expressed on their surface, called T cell receptor (TCR). In figure 1 you can see a schematic representation of the TCR and of the mechanism by which T cells recognize their targets. Antigens (proteins) from pathogens are presented to T cells by other cells of our body: they are displayed on molecules called major histocompatibility complex (MHC), expressed on the outer membrane; if the antigen fits the TCR of a specific T cell, then this T cell is activated and proliferates (clonal expansion). The two chains (α and β) are assembled using the transcription of gene segments with several copies each: in other words, TCRs are assembled with peptides chosen randomly within a set of several possible choices. This leads to a repertoire of 10^15 possible different TCRs (Mason DA 1998). Each T cell displays only one type of TCR.

Figure 1. Upper half. Th cells and CTLs share the same TCR: in both cases this molecule is the assembly of two peptides (chain α and chain β), but while the TCR of Th cells (on the right) is expressed next to the molecule CD4 (which binds to class II MHC), the TCR of CTL is associated with the molecule CD8 (on the left), which is specific for MHC I. Black bars represent four chains (a complex called CD3) that are involved in the signaling of the TCR with the nucleus of the cell (by Paolo Maccallini). Lower half. A beautiful structural representation of the TCR, bound to the peptide-MHC complex (pMHC), from (Gonzàlez PA et al. 2013). In green the peptide, in blue the β chain, in dark green the α chain. CDRs (complementarity determining regions, orange) are composed of those residues of the α and β chains that directly bind the pMHC.

4. T helper cells

Th cells can recognize only antigens presented by class II MHC: this class of MHC is expressed on the outer membrane of some leukocytes, mainly dendritic cells, B cells, and macrophages (referred to as antigen presenting cells, APCs). MHC II engages the TCR of Th cells thanks to peptide CD4 (expressed exclusively by Th cells). The antigen presented by MHC II is a peptide with a length of 13-17 amino acids (Rudensky, et al., 1991) (figure 2).

Figure 2. The TCR expressed by a Th cell binds an epitope presented by a class II MHC expressed on the plasma membrane of an APC. Chains α and β of MHC II are also represented (by Paolo Maccallini).

5. Cytotoxic T lymphocytes

TCRs expressed by CTLs can bind only antigens displayed by class I MHC, which can be found on the outer membrane of any cell of our body. CD8 is the molecule that makes the TCR expressed by CTLs specific for MHC I. While antigens presented by APCs belongs to pathogens that have been collected on the battlefield of the infection, peptides displayed by class I MHC of a specific cell belong to pathogens that have entered the cell itself, therefore they are the proof of an ongoing intracellular infection (figure 3). When a CTL recognizes an antigen that fits its TCR, then the CTL induces apoptosis (programmed death) of the cell that displays it. Antigens presented by MHC I are peptides in the range of 8 to 10 amino acids (Stern, et al., 1994).

Figure 3. An infected cell displays a viral antigen on its MHC I. The TCR of a CTL binds this peptide and send a signal to the nucleus of the CTL itself, that responds with the induction of apoptosis (releasing granzymes, for instance) of the infected cell (by Paolo Maccallini).  

6. The universal immune testing

In his talk, Mark Davis presents an overview of some basic concepts about the immune system, before introducing his exciting new data about ME/CFS and post-treatment Lyme disease syndrome (PTLDS, also known as chronic Lyme). But he also describes a few details of a complex new assay that is theoretically able to read all the information packed in the repertoire of TCRs present – in a given moment – in the blood of a human being. As such, this test – that I have named the universal immune testing – seems to have the potential to determine if a given patient has an ongoing infection (and the exact pathogen) or an autoimmune disease (and the exact autoantigen, i.e. the tissue attached by the immune system). To my understanding, this assay requires three steps, described in the following sections.

6.1. First step: TCR sequencing

As said in paragraph 3, when T cells encounter their specific peptide presented by MHC, they proliferate so that in blood of patients with an ongoing infection (or with a reaction against self, i.e. autoimmunity) we can find several copies of T cells expressing the same TCR: while in healthy controls about 10% of total CD8 T cells is represented by clones of a few different T cells (figure 4, first line), in early Lyme disease – an example of active infection – and in multiple sclerosis (MS) – an example of autoimmune disease – we have a massive clonation of a few lines of CTLs (figure 5, second and third line, respectively). The first step of the universal immune testing is represented by the identification of the exact sequence of TCRs expressed by T cells in blood, as reported in (Han A et al. 2014) where it is described how to sequence genes for the α and the β chain of a given T cell. This approach allows to build graphs of the kind in figure 4, and therefore to determine whether the patient has an abnormal ongoing T cell activity or not. If a clonal expansion is found, then we can speculate that either an active infection is present or some sort of autoimmune condition.

Clonal expansion CD8.png
Figure 4. Each circle represents a patient. In the first line, we have four healthy controls, with no clonal expansion of CD8 T cells (the first one, left) or with only a low-level clonal expansion (slices in blue, white, and grey). In the second line, we have four patients with active Lyme disease (early Lyme) and all of them present a massive expansion of only three different T cells (slices in red, blue and orange). In the third line, we have four MS patient with most of their CD8 T cells represented by clones of a bunch of T cells. From the talk by Mark Davis.

6.2. Second step: TCR clustering

Mark Davis and his group have been able to code a software that allows to identify TCRs that share the same antigen, either within an individual or across different donors. This algorithm has been termed GLIPH (grouping of lymphocyte interaction by paratope hotspots) and has been found capable – for instance – to cluster T CD4 cell receptors from 22 subjects with latent M. tuberculosis infection into 16 distinct groups, each of which comprises TCRs from at least 3 different donors (Glanville J et al. 2017). Five of these groups are reported in figure 5. The idea here is that TCRs that belong to the same cluster, react to the same peptide-MHC complex (pMHC).

Figure 5. Five group of TCRs from 22 different donors with latent tuberculosis, clustered by GLIPH. The first column on the left has TCRs IDs, the second one reports donors IDs. Complementarity determining regions (CDR) for the β and the α chains are reported in the third and fifth column, respectively. From (Glanville J et al. 2017).

6.3. Third step: quest for the epitope(s)

As we have seen, this new technology allows to recognize if T cell clonal expansion is an issue in a given patient, by sequencing TCRs from his peripheral blood. It also allows to cluster TCRs either within an individual or across different patients. The next step is to identify what kind of antigen(s) each cluster of TCRs reacts to. In fact, if we could recognize these antigens in a group of patients with similar symptoms, with T cell clonal expansion and similar TCRs, we would be able to understand whether their immune system is fighting a pathogen (and to identify the pathogen) or if it is attacking host tissues and, if that was the case, to identify what tissue. As mentioned, the number of possible TCR gene rearrangement is supposed to be about 10^15, but the number of possible Th cell epitope is about 20^15 which is more than 10^19. This implies that TCRs have to be cross-reactive to some extent, in order to recognize all possible peptides presented by MHCs (Mason DA 1998). The exact extent of this cross-reactivity and the mechanism by which it is obtained has been elucidated by Mark Davis and his colleagues in a recent paper (Birnbaum ME et al. 2014) that gives us the third step of the universal immune testing. The aim of this phase is to take a given TCR and to find the repertoire of his specific antigens (as said, one TCR reacts to several antigens). In order to understand how this is possible let’s consider one of the experiments described in the paper mentioned above. The researchers considered two well-defined TCRs (named Ob.1A12 and Ob.2F3), cloned from a patient with MS and known to recognize peptide 85-99 (figure 6) of myelin basic protein (MBP) presented by HLA-DR15. They then prepared a set of yeast cells expressing HLA-DR15 molecules, each presenting a different peptide of 14 amino acids, with fixed residues only at position 1 and 4, where the peptide is anchored to MHC (figure 6, left). When copies of Ob.1A12 are added to this culture of yeast cells expressing pMHC complexes, they bind only some of them, and as you can see in the right half of figure 6, for each position of the epitopes bound by Ob.1A12, there is an amino acid that is more likely: for instance, the typical epitope of Ob.1A12 preferentially has alanine (A) at position -4, histidine (H) at position -3, arginine (R) at position -2, and so forth. As you can see, histidine (H) at position 2 and phenylalanine (F) at position 3 are obligate amino acids for a Ob.1A12 epitope.

Figure 6. On the left: peptide 85-99 of myelin basic protein (first row) is known to be an epitope for Ob.1A12. At position 1 and 4 it has two residues that allow its binding to the MHC molecule. At position -2, -1, 2, 3, and 5 we find those residues that bind the TCR. The second row represents the generic epitope of the peptide library used to identify the degree of crossreactivity between all the possible Ob.1A12 specific epitopes. On the right: the likelihood of amino acids for each position of Ob.1A12 specific epitopes is represented by shades of violet. As you can see, histidine (H) at position 2 and phenylalanine (F) at position 3 are obligate amino acids for a Ob.1A12 epitope. From (Birnbaum ME et al. 2014).

The table on the right side of figure 6 is, in fact, a substitution matrix with dimension 14×20, a tool that can be used to scan the peptide database in order to find, among all the known peptides expressed by living creatures, all the possible Ob.1A12 specific epitopes. Substitution matrices are commonly used for the so-called peptide alignment, a technique that aims at the identification of similarities between peptides. These matrices are based on evolutionary considerations (Dayhoff, et al., 1978) or on the study of conserved regions in proteins (Henikoff, et al., 1992). But the search for specific epitopes of a given TCR requires (as we have seen here for Ob.1A12) a substitution matrix built ad hoc for that TCR: each TCR requires its own substitution matrix that is obtained adding clones of that TCR on a culture of yeast cells presenting a huge peptide library on their MHCs, and analyzing data from this experiment. So, quite a complex process! In the case of Ob.1A12, this process led to 2330 peptides (including MBP), while the Ob.2F3 specific substitution matrix found 4824 epitopes within the whole peptide database. These peptides included both non-human proteins (bacterial, viral…) and human peptides. For 33 of them (26 non human and 7 human proteins), this group of researchers performed a test in order to directly verify the prediction: 25/26 of environmental peptides and 6/7 of the human peptides induced proliferation of T cells expressing Ob.1A12 and/or Ob.2F3, and this is a huge proof of the validity of this analysis! These 33 peptides are reported in figure 7. This is the last step of the universal immune testing, the one that from the TCR leads to the epitopes. As you have seen, a huge set of different peptides from different sources is linked to each single TCR, in other words, crossreactivity is an intrinsic property of TCR. This also means that lymphocyte transformation tests (LTTs), widely used in Europe for the detection of infections like Borrelia burgdorferi and others, bear a high risk of false-positive results and require a process of experimental and theoretical validation, that is currently lacking (see also this post on this issue).

Crossreactive epitopes.JPG
Figure 7. A set of 33 peptides (both human and environmental) predicted to be specific epitopes for both Ob.1A12 and Ob.2F3. From (Birnbaum ME et al. 2014).

We are now ready to fully appreciate the pilot data that Mark Davis presented at the Symposium on CD8 T cell clonal expansion in ME/CFS and in chronic Lyme.

7. We have a hit!

Mark Davis, along with Jacob Glanville and José Montoya, has sequenced TCRs from the peripheral blood of 50 ME/CFS patients and 49 controls (first step of the universal immune testing, remember?), then they have clustered them using the GLIPH algorithm (second step). They have found 28 clusters with more than 2500 similar sequences each, where each cluster collects multiple sequences from the same individual as well as (which is perhaps more important) sequences from different patients (figure 8). The cluster that I have circled in red, for instance, is a collection of more than 3000 similar TCRs. The presence of this wide clusters in ME/CFS patients, compared to healthy controls, represents an indirect proof of a specific T cell response to some common trigger in this group of patients, which might be a pathogen or a tissue of the body (or both).

Clustered TCR
Figure 8. In ME/CFS, TCRs sequences from 50 patients form 28 clusters with more than 2500 similar sequences, and this is clearly not the case in healthy controls. This point to some specific immune response to a pathogen or to a human tissue (or both). This slide is from the talk by Mark Davis.

Among these 50 ME/CFS patients, Davis and colleagues selected 6 patients with similar HLA genes (figure 9, left), 5 females among them, and studied their TCRs deeper. In the right half of figure 9, you can see for each patient the degree of CTL clonal expansion. Remember that in healthy controls only about 10% of CTLs is composed by clones of a few cells (figure 4, first raw), while here we see that about 50% of all CTLs is composed by clones. So, a “marked clonal expansion” of CD8 T cells, as Davis said.

ME subjects CD8
Figure 9. On the left: 6 MECFS patients with similar HLA genes have been selected. Patient ID is reported in the first column on the left, the second column indicates the age of each patient, the third indicates the gender, the fourth column is about exposure to cytomegalovirus, the third one is on MHC I genes. On the right: analysis of clonal expansion of CD8 T cells for each of the six patients. There is a marked clonal expansion (about 50%) compared to healthy controls (about 10%).

Sequences of α and β chains of TCRs from three of the six patients (patients L4-02, L4-10, and L3-20) are reported in figure 10 (I have verified that in fact these are sequences of α and β chains of human TCRs using them as query sequences in standard protein BLAST).

TCR epitope.png
Figure 10. Beta chains (first column) and respective α chains (fifth column) from 3 ME/CFS patients (L4-02, L4-10, and L3-20, last column).

So, we have seen so far the first two steps of the universal immune testing in ME. What about the third step? In his talk, Mark Davis didn’t present any particular epitope, he just showed a slide with what likely is the selection of the epitopes from the peptide library (see paragraph 6.3) by one of the TCRs reported in figure 10. This selection is reported in figure 11, but from that picture, it is not possible to gather any information about the identity of these epitopes. As you probably remember from paragraph 6.3, the analysis of the peptides selected by a TCR among the peptide library allows the identification of a substitution matrix that can be used to select all the possible epitopes of that specific TCR, from the peptide database. This last crucial step has to be performed yet, or it has been already performed, but Davis has not communicated the preliminary results during his talk. Recently new resources have been made available by Open Medicine Foundation, for this promising research to be further pursued, among other projects (R). The aim here, as already said, is to find the antigen that triggers this T cell response. As Mark Davis said, it might be an antigen from a specific pathogen (perhaps a common pathogen that comes and goes) that elicits an abnormal immune response which ends targeting some host tissue (microglia, for instance), thus leading to the kind of immune activation that has been recently reported by Mark Davis himself and others in ME/CFS (Montoya JG et al. 2017). The idea of a common pathogen triggering a pathologic immune response is not new in medicine, and rheumatic fever (RF) is an example of such a disease: RF is an autoimmune disease that attacks heart, brain and joints and is generally triggered by a streptococcal throat infection (Marijon E et al. 2012). The other possible avenue is, of course, that of an ongoing infection of some kind, that has yet to be detected. As said (see par. 6.1), CD8 T cell clonal expansion is present in both acute infections (like early Lyme disease) and autoimmune diseases (like MS) (figure 4), so we have to wait for the antigen identification if we want to understand if the CTLs activity is against a pathogen and/or against a host tissue.

Figure 11. In this picture, we can see the selection, through several rounds, of a bunch of peptides by a particular TCR from a ME patient. The selection takes place among a huge collection of peptides presented by HLA-A2 (MHC I) expressed by yeast cells. At each round the number of possible peptides is smaller.

8. Chronic Lyme does exist

It has probably been overlooked that in his talk, Mark Davis reported also very interesting data on post-treatment Lyme disease syndrome (PTLDS, also known as chronic Lyme disease). In particular, he found a marked clonal expansion in CD8 T cells of 4 PTLDS patients (about 40% of total CTLs) as reported in figure 12: consider that in this case, blue slices represent unique T cells, while all the other slices represent clones! All that has been said about CD8 clonal expansion in ME/CFS does apply in this case too: it might be the proof of an ongoing infection – perhaps the same B. burgdorferi, as suggested by several animal models (Embers ME et al. 2017), (Embers ME et al. 2012), (Hodzic E et al. 2008), (Yrjänäinen H et al. 2010) – or a coinfection (a virus?) or it could be the expression of an autoimmune reaction triggered by the initial infection. This has still to be discovered, running the complete universal immune testing, but what is already clear from figure 12 is that PTLDS is a real condition, with something really wrong going on within the immune response: chronic Lyme does exist.

Figure 12. CD8 T cells clonal expansion in four chronic Lyme patients: there is a marked clonal expansion that stands for T cell activity against a pathogen or against host tissue.

9. Conclusions

Mark Davis and other researchers have developed a complex assay that is able to sequence TCRs from patients, cluster them into groups of TCRs that react to the same antigens, and discover the antigens that triggered that particular T cell response. This assay is a kind of universal immune testing that is theoretically able to recognize if a person (or a group of patients) presents an immune response against a pathogen or against one of his own tissues (or both). This approach has already given pilot data on an ongoing CD8 T cell activity in ME/CFS patients and in chronic Lyme patients and will hopefully identify the trigger of this immune response in the near future. Whether ME/CFS is an ongoing infection, an autoimmune disease or both, the universal immune testing might be able to tell us. This new technology is for immunology, what whole genome sequencing is for genetics, or metabolomics is for molecular diseases: it doesn’t search for a particular pathogen or a particular autoimmune disease. No, it searches for all possible infections and immune disorders, even those that have yet to be discovered.


Consider supporting this website with a donation.


Conferme sulla esistenza della Lyme persistente

Conferme sulla esistenza della Lyme persistente

Monica Embers (Tulane University) pubblica due nuovi studi sul modello animale di Lyme tardiva (R), (R).

Dieci macachi (Macaca mulatta) sono stati infettati con B. burgdorferi. Dopo 5 mesi (Lyme tardiva) sono stati trattati con doxyciclina orale (5 mg/kg) per un mese. Dopo altri 8 mesi sono stati sacrificati e diversi campioni di tessuto sono stati sottoposti a svariate indagini che hanno dimostrato la presenza di fenomeni infiammatori (infiltrati linfocitari) in corrispondenza di rare spirochete (figura 1). Questo macaco condivide con gli esseri umani il 97.5% del DNA (R) ed è dunque presumibilmente un buon modello animale di malattia di Lyme.

Figura 1. Presenza di spirochete residue negli animali trattati, localizzate nel neuropilo cerebrale (regione compresa tra i corpi cellulari dei neuroni) (F), nel tronco encefalico (G) e in un nervo periferico della gamba (K).

Lo studio dimostra anche la esistenza di una infezione residua in due esemplari sieronegativi, confermando la nozione secondo la quale la sierologia può essere poco sensibile non solo nella fase iniziale (cosa ben nota e riconosciuta), ma anche nella fase tardiva della infezione (figura2). Si evince anche che la risposta immunitaria al C6, a volte usata come test di primo livello, non rimane positiva in tutti i casi di infezione persistente.

Figura 2. Sopra la risposta anticorpale alle principali proteine immunogeniche di B.b. in 4 dei 10 individui studiati. Sotto il risultato di alcune indagini negli stessi individui. In rosso un individuo che risulta positivo al test della xenodiagnosi, ma è tuttavia sieronegativo. In verde un individuo che perde la sua risposta immunitaria nel tempo, pur essendo positivo alla xenodiagnosi. In blu un individuo che perde la risposta al C6, pur essendo positivo a diversi test diretti.

Secondo gli autori, questi dati suggeriscono che i sintomi cronici della malattia di Lyme siano dovuti alla sopravvivenza di alcuni esemplari di Borrelia in vari tessuti. Lo studio conferma un lavoro precedente dello stesso gruppo, sullo stesso modello animale (Embers, 2012). Risultati analoghi sono stati riportati in altri modelli animali (Hodzic, E et al. 2008), (Yrjänäinen, 2010).

Mercoledì della scienza 5

Mercoledì della scienza 5

Tradotto da Valentina Viganò. Documento originale qui.

Questo #OMFScienceWednesday, c’interessiamo di espressioni genetiche nella ME/CFS, misurando l’RNA in campioni di pazienti.

I geni, composti da DNA – si esprimono in RNA per compiere le loro funzioni cellulari, spesso traducendosi in proteine. La quantità di RNA espressa da ogni gene è regolata dalle nostre cellule in base alle informazioni fornite dal DNA, fattori di stress come le malattie, e il tipo di cellula in questione (ad es. cellule cerebrali o muscolari). Misurando la quantità di RNA espressa in cellule ematiche, ad esempio, si possono scorgere delle differenze tra le funzioni biologiche di pazienti con la ME/CFS e quelle delle persone sane.

Questo ci aiuta a capire quali delle funzioni potrebbero avere dei problemi e quali potrebbero essere attivate per gestire la malattia, oltre a quali malattie hanno regolamenti genetici simili, o come i pazienti stanno rispondendo a terapie diverse. Ad esempio, alcuni studi hanno dimostrato che i profili di espressione genetica della ME/CFS sono simili ad altre malattie infiammatorie o infettive.

Per maggiori informazioni sull’espressione genetica e le malattie consultate:

mercoledì 5.jpg

Mercoledì della scienza 4

Mercoledì della scienza 4

Tradotto da Paolo Maccallini. Documento originale qui.

Per questo appuntamento con il mercoledì della scienza, condividiamo con voi alcuni momenti salienti della conferenza dello Stanford Genome Technology Center (SGTC), tenutasi questa settimana. Si tratta di un evento annuale in cui il gruppo di ricerca che fa capo a Ron Davis si riunisce per condividere i propri risultati e per discutere le prospettive del proprio lavoro di indagine. Una intera sessione è stata dedicata alla ricerca sulla ME/CFS, e altre sessioni sono state riservate al lavoro svolto dal SGTC nei campi della biologia sintetica, degli approcci genomici alle malattie, e delle tecnologie diagnostiche.

Durante la sessione sulla ME/CFS, sono stati presentati degli aggiornamenti sul “Severely Ill Patients Study” (studio sui pazienti severi), finanziato dalla Open Medicine Foundation (OMF). Wenzhong Xiao ha evidenziato che:

  • i punteggi del questionario SF-36 (strumento utilizzato comunemente per la misura della qualità della vita) sono peggiori nella ME/CFS che nelle maggiori malattie note, e sono diversi dai risultati che si ottengono nella depressione e nelle malattie mentali in genere;
  • ci sono differenze significative in 21 citochine fra i pazienti e i controlli sani;
  • ci sono differenze significative in 27 test clinici fra i pazienti e i controlli sani, tra cui si segnala una riduzione del cortisolo del mattino nei pazienti rispetto ai controlli;
  • 63  metaboliti sono significativamente diversi nei pazienti rispetto ai controlli;
  • Esiste una sovrapponibilità fra la ME/CFS e la sindrome della risposta infiammatoria sistemica.

Questa è una massiccia collezione di dati che si presta ad ulteriori analisi. Molte idee sono state discusse tra una sessione e l’altra, tra cui le possibili applicazioni della modellistica matematica, della analisi genetica, la comparazione con altre malattie, e altro ancora. Tutti i dati raccolti sono messi a disposizione della comunità scientifica, per accelerare l’analisi! Per una lista dei test condotti sui pazienti si veda qui.

Laurel Crosby ha evidenziato quanto lontana sia arrivata la ricerca sulla ME/CFS presso il SGTC, grazie al supporto della OMF: partendo alcuni anni fa da un solo paziente e da finanziamenti inesistenti, si è arrivati a decine di pazienti, a una estesa raccolta di dati, a una rete fitta di collaboratori e a finanziamenti sia per il personale che per gli esperimenti. L’intero gruppo è estremamente grato per il supporto e per le prospettive scientifiche che esso apre!


Riflessioni sulla malattia di Lyme

Riflessioni sulla malattia di Lyme

Mi è stato chiesto di scrivere due righe che potessero sintetizzare quali sono i problemi attuali nella malattia di Lyme e quali dovrebbero essere i campi di intervento per migliorare la situazione. Questi argomenti sono trattati nel blog, con un ampio corredo bibliografico. Ma volendo sintetizzare, ciò che segue è quello che penso.

“Il problema maggiore nella malattia di Lyme attualmente è quello rappresentato dai pazienti con sintomi cronici. Per questo gruppo di pazienti (che ricade sotto la entità nosografica denominata post-treatment Lyme disease syndrome, PTLDS) non esistono terapie approvate, in nessuna nazione europea e – a quanto ne so – nel mondo.

I pazienti sono da un lato sminuiti nella loro sofferenza da medici che negano l’obiettività dei sintomi cronici e dall’altro sono oggetto di vere e proprie truffe da parte di cliniche private che offrono test privi di validazione scientifica e terapie di efficacia non dimostrata e potenzialmente dannose.

Non è nota la causa della persistenza dei sintomi dopo le terapie raccomandate e le ipotesi considerate sono: persistenza della infezione, presenza di altri agenti patogeni non identificati e non trattati, disfunzioni immunitarie, danni residui ai tessuti, danno al microbiota. Nessuna di queste ipotesi è stata dimostrata in modo convincente.

Penso sia un dovere occuparci di questi pazienti, fino ad oggi completamente trascurati dalla medicina e rifiutati dal sistema sanitario. Sarebbe auspicabile una strategia di ricerca aggressiva che investighi i seguenti punti:

  • lo sviluppo di un test per la infezione attiva da Borrelia burgdorferi;
  • la ricerca della eziologia dei sintomi cronici, attraverso indagini immunologiche, metabolomiche, metagenomiche, genomiche, proteomiche, di espressione genica, di brain imaging etc;
  • trial clinici con terapie innovative per la fase cronica;
  • studi di microbiologia sul fenomeno della persistenza batterica, ormai ampiamente documentato in vitro nel caso di Borrelia burgdorferi (R);
  • studi di neuroimmunologia che approfondiscano il dato riportato in due ricerche di ampio respiro, secondo il quale il 50% di questi pazienti presentano anticorpi contro il sistema nervoso centrale e periferico (R).

Studi su questi ambiti sono già in corso negli USA, ma date le specificità europee dell’agente patogeno e delle manifestazioni cliniche, è possibile che i risultati ottenuti nel Nuovo Mondo non siano del tutto applicabili ai pazienti europei ed è pertanto necessario che le nostre università conducano le proprie investigazioni. Non ci si può adagiare sui risultati prodotti oltreoceano.

Bisogna incoraggiare i giovani ricercatori a scegliere questo campo per la loro carriera, presentando la malattia cronica come un problema insoluto e difficile da risolvere, ma affascinante in quanto interdisciplinare, a cavallo tra la microbiologia, l’immunologia, le neuroscienze, lo studio del metabolismo, la ingegneria degli strumenti diagnostici, la bioinformatica etc. Si deve inoltre sottolineare che lo studio di questa condizione cronica potrebbe avere ricadute positive su altre malattie, come ad esempio quelle neuroimmuni, con prospettive di grandi benefici per la collettività, che possono esulare dall’ambito della PTLDS.”

Mercoledì della scienza 1

Mercoledì della scienza 1

Settimanalmente, la dr.ssa Raeka Aiyar (Università di Stanford) fornirà un aggiornamento sui progetti scientifici della Open Medicine Foundation, una sorta di blog di qualità, da parte di una biologa con PhD e diverse pubblicazioni nel campo della genetica alle spalle. Segue la traduzione del primo post, con cui inauguriamo i mercoledì della scienza. La versione originale, in inglese, si trova qui.

“Per cominciare, cosa si intende quando si afferma che la ME/CFS è una malattia molecolare? La biologia molecolare si interessa di DNA, RNA, metaboliti, proteine, citochine – e ci sono evidenze di alterazioni in molti di questi parametri nella ME/CFS. La biologia molecolare offre nuovi punti di vista da cui studiare la ME/CFS: stiamo vivendo l’epoca d’oro delle tecnologie molecolari, come la genomica e le altre ‘omiche’ (transcriptomica, metabolomica, proteomica) che ci permettono di misurare in modo efficace, poco costoso e completo queste classi molecolari. Questi studi ci permettono di capire come funziona la malattia – per esempio quali virus possono innescarla o quali sono eventuali fattori di rischio genetico – ci permettono altresì di identificare marcatori molecolari che distinguono i pazienti dai controlli sani, e che possono essere utilizzati per diagnosticare la ME/CFS. In futuro, la biologia molecolare condurrà auspicabilmente a nuovi trattamenti su base molecolare: infatti identificare livelli alterati di alcuni metaboliti potrebbe suggerire dei modi per curare la ME/CFS.

Un ottimo esempio di quanto detto è rappresentato dal recente studio metabolomico pubblicato dal dr. Bob Naviaux (R), nel quale sono stati identificati numerosi metaboliti il cui livello è alterato nei pazienti ME/CFS. Questa ‘firma metabolica’ potrebbe essere utile come marcatore, e potrebbe aiutarci a capire l’origine della mancanza di energia lamentata da questi pazienti. La OMF sta supportando un secondo studio metabolomico, per confermare ed estendere i risultati del primo, e una collaborazione con il gruppo di Ron Davis in cui viene utilizzata la scansione del genoma dei pazienti per capire come la genetica influenza il metabolismo nella ME/CFS. Restate sintonizzati per altre notizie!”

OMF: Ampliare La Cooperazione Per Sostenere La Ricerca Notiziario di Ottobre

OMF: Ampliare La Cooperazione Per Sostenere La Ricerca  Notiziario di Ottobre

Il Giving Tuesday sta per Cominciare

Siamo entusiasti di annunciare che celebreremo ancora una volta il #GivingTuesday (“il martedì della donazione”) attraverso la triplicazione delle donazioni fatte a favore della OMF. Jack e Dilla Cosgrove e la loro famiglia hanno generosamente messo a disposizione 100,000 dollari per triplicare il tuo contributo a favore della ricerca.

Se doni 250 euro, la famiglia Cosgrove aggiungerà 750 euro, e il tuo contributo sarà di 1000 euro. WOW!

Siamo estremamente grati alla famiglia Cosgrove e ti incoraggiamo a partecipare alla nostra campagna Triple Giving Tuesday. La campagna inizierà martedì 17 ottobre e continuerà fino a martedì 28 novembre. (Foto Jack Cosgrove, Dilla Cosgrove, Jill Von Ebers, Chris Quinn, Linda Tannenbaum)

Il Giving Tuesday è diventata la più grande giornata filantropica del mondo. La Open Medicine Foundation (OMF) celebrerà ancora una volta questo evento internazionale attraverso le iniziative #TripleTuesdayOMF #GivingMEday #UnselfieME.

La OMF Rafforza i Suoi Legami Internazionali

Il tour mondiale di End ME/CFS ha posto le basi per molte nuove collaborazioni a livello internazionale. Siamo entusiasti di annunciare che con l’aiuto di una squadra di 35 traduttori volontari, la OMF potrà presto condividere notizie e comunicati nelle seguenti lingue.

  • Bengalese
  • Croato
  • Ceco
  • Olandese
  • Francese
  • Tedesco
  • Italiano
  • Giapponese
  • Norvegese
  • Polacco
  • Portoghese
  • Serbo
  • Spagnolo
  • Svedese

Abbiamo aggiunto al nostro sito internet una nuova sezione dedicata alle traduzioni in modo da renderle più facili da consultare. Vi invitiamo a condividerle con i vostri familiari e con gli amici in giro per il mondo.

Il Tour Mondiale di End ME/CFS Continua con Nuove Collaborazioni

Linda Tannenbaum è stata una grande sostenitrice di Jennifer Brea fin da quando lei iniziò la sua straordinaria attività volta a favorire la coesione della comunità di pazienti e a sostenerla, attraverso la costituzione di #MEAction. E ora siamo felici di annunciare che la nostra collaborazione è ancora più stretta.

La OMF è ora partner ufficiale della campagna di impatto globale Time for Unrest, il cui obiettivo è quello di sensibilizzare, aumentare la ricerca, l’educazione e i finanziamenti a favore della ME. La campagna affianca il pluripremiato documentario Unrest, diretto da Jennifer Brea. Da quando ci unimmo a Jen per il debutto del suo film al Festival Cinematografico Sundance, l’abbiamo affiancata in numerose proiezioni. Siamo lieti di includere Unrest in alcune delle prossime tappe del Tour Mondiale. (*Questi eventi comprenderanno la proiezione di Unrest. **Domande e risposte con Ron Davis, dr.ssa Janet Dafoe e Ashley Haugen dopo la proiezione di Unrest.)

Visitate il sito internet del film Unrest per consultare il calendario completo delle proiezioni e delle sessioni di domande e risposte, e visitate il nostro sito internet per scoprire le nuove tappe del Tour Mondiale.

2 ottobre** – Menlo Park, CA

2 ottobre * – Santa Monica, CA (dibattito con Jen Brea)

15 ottobre* – Dana Point, CA

1 novembre – New York, NY

4 novembre – Boston, MA

11 novembre* – Fullerton, CA

11 febbraio – Los Angeles, CA

Grazie per aver partecipato alla campagna Coins For A Cure. Non vediamo l’ora di ricevere le vostre donazioni. Unisciti al Team della OMF organizzando degli eventi per la raccolta fondi. Siamo entusiasti di ricevere donazioni di qualunque dimensione. — Qualunque donazione aiuta ad accelerare la ricerca.

Ritorno a Scuola – Aiutiamo i Nostri Ragazzi a Farcela

Sono disponibili nuovi strumenti per aiutare genitori e ragazzi a gestire le sfide relative alla scuola. Aiutaci a rendere più facile il rientro a scuola per i bambini affetti dalla ME/CFS. Ringraziamo ancora una volta Faith Newton, PhD, della Università Statale di Delaware, per aver creato strumenti così utili per aiutare i nostri ragazzi.

Genitori: Vi invitiamo a visionare questo materiale, stamparlo e condividerlo nella scuola frequentata dai vostri figli.

Un Messaggio dalla nostra CEO/Presidente

Una delle principali vocazioni della OMF è quella di informare e coinvolgere i pazienti nella ricerca. Il nostro recente Simposio Collettivo è stato un perfetto esempio di questo. Abbiamo riunito e informato migliaia di persone di tutto il mondo attraverso la trasmissione in diretta e il video Youtube. Continueremo a seguire il paradigma del Simposio per mantenervi informati.

Siamo consapevoli che lavorando come una comunità coesa siamo più forti. Siamo ansiosi di perseguire i nostri obiettivi di ricerca avendo voi al nostro fianco.

Uniti nella speranza,

Linda Tannenbaum

I nostri obiettivi:

  • Accelerare la ricerca più innovativa sulla ME/CFS e su malattie croniche e complesse correlate;
  • Supportare la ricerca scientifica collaborativa per scoprire le cause molecolari, individuare trattamenti efficaci, marcatori diagnostici, strategie di prevenzione e di cura.
  • Comunicare con i pazienti, coinvolgerli e informarli.
  • Aiutare a guidare e sostenere la collaborazione a livello globale.

Se desideri ricevere i notiziari della OMF in italiano direttamente nella tua casella di posta elettronica, registrati assicurandoti di includere la tua nazionalità. Troverai comunque tutte le traduzioni in italiano dei notiziari nel nostro sito internet. Se scrivi alla OMF, ti preghiamo di farlo in inglese.

Per ulteriori informazioni: Contattaci: Registrati alla nostra newsletter. Seguici su Twitter. Metti mi piace su Facebook. Dona per sostenere la ricerca.

La OMF ringrazia Paolo Maccallini per la presente traduzione in italiano.




La babesiosi umana è causata da protozoi del genere Babesia che vivono negli eritrociti. In Europa la babesiosi è trasmessa principalmente da Ixodes ricinus, la stessa zecca che trasmette la malattia di Lyme. E’ teoricamente possibile la trasmissione attraverso trasfusioni. Secondo alcuni studi la contemporanea trasmissione di Babesia e Borrelia rende peggiore e più lungo il decorso della malattia di Lyme. I sintomi della babesioisi sono sintomi influenzali, mialgie, disturbi gastro-intestinali  (Stinco G. et Bergamo S. 2016). Le principali specie patogene in Europa sono Babesia divergens, B. venatorum, B. microti (ECDC). I test per Babesia possono essere eseguiti nei centri indicati qui di seguito.

  • Esame diretto presso il Policlinico San Matteo, Pavia. Si tratta dell’esame al microscopio dello “striscio” di sangue. Questo test permette la diagnosi nella fase acuta della infezione.
  • Ricerca del DNA presso l’Ospedale Sacro Cuore Don Calabria, Verona. Purtroppo questo esame è disponibile solo per la specie B. microti. Non è nota la cross-reattività per le altre specie europee, ma non è da escludere.
  • Sierologia presso l’Azienda Ospedaliera di Padova. La sierologia viene eseguita solo per la specie B. microti. Non è nota la cross-reattività per le altre specie europee, ma non è da escludere.

Neuropatia delle piccole fibre

Neuropatia delle piccole fibre


Le piccole fibre sono tratti del sistema nervoso periferico per lo più sprovvisti di guaina mielinica (fibre C). Innervano la pelle (fibre somatiche coinvolte nella percezione del dolore), gli organi interni, e sono anche coinvolte nella funzione del sistema nervoso autonomo (fibre autonomiche) (Devigili G et al. 2008).

Le piccole fibre del sistema nervoso autonomo sono tratti post-ganglionici tanto del ramo simpatico che del ramo parasimpatico. Le prime si dividono in piccole fibre simpatiche sudomotorie (coinvolte nella sudorazione e sono a trasmissione colinergica) e in piccole fibre simpatiche cardiache (regolano la frequenza e la pressione cardiaca e sono a trasmissione adrenergica); le seconde regolano la frequenza cardiaca e sono a trasmissione colinergica (Goodman BP 2007).

Test diagnostici

Il danno alle piccole fibre simpatiche sudomotorie si rileva con il quantitative sudomotor axon reflex test (QSART) che misura la fuoriuscita di sudore nei seguenti siti: avambraccio, fascia laterale prossimale della gamba, parte interna della gamba, piede (Goodman BP 2007).  Questo test è anormale in pazienti ME/CFS+POTS e in pazienti POTS non CFS (Okamoto LE et al. 2012).

Un altro modo di rilevare un danno alle piccole fibre è quello di misurare la loro densità nella pelle. A questo scopo si esegue una biopsia cutanea della profondità di 3 mm in due sedi: 10 cm sopra il malleolo e 10 cm sopra il ginocchio, e si esaminano le piccole fibre al microscopio. Si ottiene in questo modo la densità delle fibre nervose intra-epidermiche (IENFD): un valore <7/mm indica un danno (Goodman BP 2007). Non sono sicuro, ma credo che questo test misuri soprattutto danni alle fibre somatiche.

Test in Italia

La biopsia cutanea per la misura della densità delle piccole fibre si esegue presso la UOC III Clinica Neurologica IRCCS, Istituto Besta di Milano (dr. Giuseppe Lauria Pinter). La biopsia cutanea e i test di sudorazione vengono effettuati presso la Fondazione Salvatore Maugeri a Telese Terme (BN).

Neuropatia delle piccole fibre, POTS, ME/CFS e Lyme

Un danno alle piccole fibre si riscontra in svariate patologie, tra cui diabete, Sjogren, ipotiroidismo, malattia celiaca e altre (Devigili G et al. 2008). Nella POTS si ha una prevalenza di neuropatia delle piccole fibre significativamente maggiore che nelle persone sane. In uno studio del 2013 il 37% dei pazienti POTS (9/24) presentava una biopsia cutanea anormale, contro lo 0% dei controlli sani (Gibbons CH et al. 2013).  Non esistono studi sulla prevalenza della neuropatia delle piccole fibre nella ME/CFS, ma la sovrapponibilità tra ME/CFS e POTS (Okamoto LE et al. 2012) nonché casi aneddotici suggeriscono che un sottogruppo di pazienti ME/CFS possa essere portatore di questa malattia. Secondo David M. Systrom (Harward Medical School) la biopsia cutanea mostra la presenza di una neuropatia delle piccole fibre nel 70% dei suoi pazienti ME/CFS/FM/POTS (R). La neuropatia delle piccole fibre (biopsia cutanea positiva) è stata riportata anche nella malattia di Lyme, in almeno due pazienti (Younger DS. et Orsher S. 2010), (Feuer N. et Alaedini A. 2016).

Nella ME/CFS e nella POTS si può pensare che la neuropatia delle piccole fibre sia – almeno in parte e almeno in alcuni casi – la causa dei sintomi, più che una mera conseguenza (come succede invece nel diabete). E questo sarebbe dimostrato da uno studio retrospettivo della dr.ssa Oaklander (Harvard Medical School) in cui i pazienti migliorano a seguito di trattamento con immunoglobuline in vena.


Febbre Q

Febbre Q


Coxiella burnetii è un batterio intracellulare, agente eziologico delle Febbre Q, una zoonosi comune in Europa. Si trasmette prevalentemente per inalazione di particelle contaminate e attraverso consumo di latte non pastorizzato (Ledina D. et al. 2007). La febbre Q è diffusa anche in Italia, da Nord a Sud (Fenga C et al. 2015). Si ipotizza anche una trasmissione attraverso morso di Ixodes ricinus – lo stesso vettore della malattia di Lyme – ma ad oggi questa via di tasmissione non è stata dimostrata (Eldin C et al. 2017). Uno studio ha rilevato la presenza di C. burnetii nel 7% degli esemplari di Ixodes ricinus raccolti in un parco di Roma (Mancini F et al. 2014), si veda in proposito questo articolo del blog.

C. burnetii e ME/CFS

In alcuni casi di Febbre Q, la malattia non si risolve, dando luogo a una condizione cronica denominata post-Q-fever fatigue syndrome (post-QFS), simile alla ME/CFS e ad alcuni casi di “Lyme cronica” (Ayers JG et al. 1998), (Hickie I et al. 2006), (Ledina D. et al. 2007). La cosa interessante è che degli studi indicano che alcuni di questi pazienti presentano una infezione persistente e possono trarre giovamento da cure specifiche per C. burnetii  (Arashima, Y et al. 2004), (Ledina D. et al. 2007). Lo stesso José Montoya (Stanford University) ha riportato casi aneddotici di miglioramento, grazie all’uso della doxiciclina (video, da 35:40). La questione resta comunque controversa.


La sierologia e la ricerca del DNA per Coxiella burnetii può essere eseguita ad esempio presso l’Ospedale Lazzaro Spallanzani di Roma. Questi esami misurano rispettivamente la presenza di IgM/IgG e la presenza di DNA del batterio nel sangue periferico.


Considera una donazione per sostenere questo blog.


Esame del liquor nella malattia di Lyme

Esame del liquor nella malattia di Lyme

Sierologia su liquido cerebrospinale

Nei pazienti in cui si sospetti la possibilità che il batterio abbia raggiunto il sistema nervoso centrale, si può ricorrere all’analisi del liquido cerebrospinale (CSF). Infatti, la rilevazione di una produzione intratecale di anticorpi specifici contro B. burgdorferi sl dimostra un coinvolgimento, presente o passato, del sistema nervoso centrale e può fornire la base per la diagnosi di neuroborreliosi (1). La produzione intratecale può essere dimostrata prelevando contemporaneamente il siero e il liquido cerebrospinale e diluendoli finché non presentino la medesima concentrazione di IgG. Quindi si procede alla ricerca di anticorpi specifici per B. burgdorferi sl in entrambi i campioni e infine si calcola il rapporto tra i valori ottenuti su liquor e quelli ottenuti su siero, ricavando l’indice CSF/siero. Se questo indice è >1.3, allora la produzione intratecale è dimostrata (2). Questo tipo di analisi può essere discriminante in alcune circostanze, infatti sono stati descritti casi di Lyme in cui si ha produzione intratecale di anticorpi, in pazienti sieronegativi (3). La rilevazione di IgG intratecali ha una sensibilità dall’80 al 100% nella neuroborreliosi. Nei bambini con neuroborreliosi precoce, la produzione intratecale di IgM specifiche per B. burgdorferi sl ha anch’essa una elevata specificità (4). La produzione di anticorpi intratecali sembra associata con maggiore frequenza alla infezione da B. garinii (5) ed è infatti un riscontro raro negli Stati Uniti. Una falsa positività nella produzione intratecale delle IgM è stata riportata nel caso di meningite da Epstein-Barr virus (6).

Parametri infiammatori del liquido cerebrospinale

Nella neuroborreliosi europea si riscontra tipicamente una elevata conta leucocitaria nel liquido cerebrospinale, dell’ordine di 10-1000 leucociti/ml. L’elevazione dei leucociti è dovuta principalmente a un aumento di linfociti in generale e di cellule B del plasma, in particolare (6). Nella neuroborreliosi si riscontra altresì un aumento delle proteine nel liquido cerebrospinale e la presenza di bande oligoclonali (6), dove entrambi i parametri sono marcatori di infiammazione del sistema nervoso centrale. La presenza di bande oligoclonali nel liquido cerebrospinale indica la produzione intratecale di immunoglobuline della classe IgG, che non sono presenti nel siero. Le bande oligoclonali non sono specifiche della neuroborreliosi di Lyme, essendo presenti anche in altre patologie neuroimmuni. Si consideri infatti che il 90% di pazienti affetti da sclerosi multipla è positiva al test delle bande oligoclonali (7).


Considera una donazione per sostenere questo blog.



  1. Wilske, B, Fingerle, V e Schulte-Spechtel, U. Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol Med Microbiol. Feb 2007, Vol. 49, 1, p. 13-21.
  2. Wilske, B, et al. Intrathecal production of specific antibodies against Borrelia burgdorferi in patients with lymphocytic meningoradiculitis (Bannwarth’s syndrome). J Infect Dis. Feb 1986, Vol. 153, 2.
  3. Wilske, B, Zoller, L e Brade, V. MIQ 12 Lyme-borreliose. [aut. libro] H Mauch e R Luticken. Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. Verlag : Munich: Urban&Fischer, 2000.
  4. Hansen, K e Lebech, AM. Lyme neuroborreliosis: a new sensitive diagnostic assay for intrathecal synthesis of Borrelia burgdorferi–specific immunoglobulin G, A, and M. Ann Neurol. 1991, Vol. 30, 2.
  5. Ruzić-Sabljić, E, et al. Analysis of Borrelia burgdorferi sensu lato isolated from cerebrospinal fluid. APMIS. 2001, Vol. 109, 10.
  6. Mygland, A, et al. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. European Journal of Neurology. 2010, Vol. 17, p. 8,16.
  7. Johns, Paul. Clinical Neuroscience. s.l. : Elsevier, 2014.


OMF: Pubblicati i resoconti del Simposio Collettivo – Notiziario di agosto

OMF: Pubblicati i resoconti del Simposio Collettivo – Notiziario di agosto

Cari amici italiani.

Siamo molto grati ed entusiasti di poter condividere le notizie della Open Medicine Foundation (OMF) con la vostra associazione. Vi invitiamo a condividere queste informazioni con la vostra organizzazione e su Facebook o Twitter. Se desideri ricevere il testo e le immagini in altri formati (Word, PDF), mandami una richiesta a Questo messaggio è stato cortesemente tradotto da Paolo Maccallini.

Uniti nella speranza, Sara

Sito web: