A complete (preload) failure

FeaturedA complete (preload) failure

Introduction

Some days ago, David Systrom offered an overview of his work on cardiopulmonary testing in ME/CFS during a virtual meeting hosted by the Massachusetts ME/CFS & FM Association and the Open Medicine Foundation. In this blog post, I present an introduction to the experimental setting used for Systrom’s work (paragraph 1), a brief presentation of his previous findings (paragraph 2), and an explanation of his more recent discoveries in his cohort of patients (paragraph 3). In paragraph 4 you’ll find a note on how to support his research.

1. Invasive Cardiopulmonary Exercise Testing

It is a test that allows for the determination of pulmonary, cardiac, and metabolic parameters in response to physical exertion of increasing workload. It is, mutatis mutandis, the human equivalent of an engine test stand. A stationary bike with a mechanical resistance that increases by 10 to 50 Watts for minute is usually employed for assessing the patient in a upright position, but a recumbent bike can also be used in some instances. Distinguishing between these two different settings might be of pivotal relevance in ME/CFS and POTS. I shall now briefly describe some of the measurements that can be collected during invasive cardiopulmonary exercise testing (iCPET) and their biological meaning. For a more accurate and in-depth account, please refer to (Maron BA et al. 2013), (Oldham WM et al. 2016). I have used these papers as the main reference for this paragraph, unless otherwise specified.

Gas exchange. A face mask collects the gasses exchanged by the patient during the experiment and allows for monitoring of both oxygen uptake per unit of time (named VO_2) and carbon dioxide output (VCO_2), measured in mL/min. Gas exchange is particularly useful for the determination of the anaerobic threshold (AT), i.e. the point in time at which the diagram of VCO_2 in function of VO_2 displays an abrupt increase in its derivative: at this workload, the patient starts relying more on her anaerobic energy metabolism (glycolysis, for the most part) with a build-up of lactic acid in tissues and blood (see Figure 1).

Figure 1. Diagram of VCO_2 in function of VO_2. The point in which there is a change in the derivative with respect to VO_2 is called “anaerobic threshold” (AT). AT is highlighted with a vertical line in this picture. This diagram is from an actual CPET of a patient.

Oxygen uptake for unit of time at AT (called VO_2max) can be considered an integrated function of patient’s muscular, pulmonary, and cardiac efficiency during exercise. It is abnormal when its value is below 80% of what predicted according to patient’s age, sex, and height. Importantly, according to some studies there might be no difference in VO_2max between ME/CFS patients and healthy controls, unless the exercise test is repeated a day after the first measure: in this case the value maxVO_2 for patients is significantly lower than for controls (VanNess JM et al. 2007), (Snell CR and al. 2013).

Another measure derived from the assessing of gas exchange is minute ventilation (VE, measured in L/min) which represents the total volume of gas expired per minute. The link between VE and VO_2 is as follows:

VO_2\;=\;VE\cdot(inspired\;VO_2\; -\; expired\;VO_2)

Maximum voluntary ventilation (MVV) is the maximum volume of air that is voluntarily expired at rest. During incremental exercise, a healthy person should be able to maintain her VE at a value ∼0.7 MVV and it is assumed that if the ratio VE/MVV is above 0.7, then the patient has a pulmonary mechanical limit during exercise. If VE is normal, then an early AT suggests an inefficient transport of oxygen from the atmosphere to muscles, not due to pulmonary mechanics, thus linked to either pulmonary vascular abnormalities or muscular/mitochondrial abnormalities. It is suggested that an abnormally high derivative of the diagram of VE in function of VCO_2 and/or a high ratio VE/VCO_2 at AT (these are measures of how efficiently the system gets rid of CO_2) are an indicator of poor pulmonary vascular function.

Respiratory exchange ratio (RER) is a measure of the effort that the patient puts into the exercise. It is measured as follows:

RER=\frac{VCO_2}{VO_2}

and an RER>1.05 indicates a sufficient level of effort. In this case the test can be considered valid.

Arterial catheters. A sensor is placed just outside the right ventricle (pulmonary artery, Figure 2) and another one is placed in the radial artery: they allow for measures of intracardiac hemodynamics and arterial blood gas data, respectively. By using this setting, it is possible to indirectly estimate cardiac output (Qt) by using Fick equation:

Qt=\frac{VO_2}{arterial\;O_2 - venous\;O_2}

where the arterial\;O_2 is measured by the radial artery catheter and the venous one is measured by the one in the pulmonary artery (ml/L). An estimation for an individual’s predicted maximum Qt (L/min) can be obtained by dividing her predicted VO_2max by the normal maximum value of  arterial\;O_2 - venous\;O_2 during exercise, which is 149 mL/L:

predicted\; Qt\;max=\frac{predicted\; VO_{2}max}{149 \frac{mL}{L}}

If during iCPET the measured Qt max is below 80% of the predicted maximum cardiac output (as measured above), associated with reduced VO_2max, then a cardiac abnormality might be suspected. Stroke volume (SV), defined as the volume of blood ejected by the left ventricle per beat, can be obtained from the Qt according to the following equation:

Qt=SV\cdot HR\;\xrightarrow\;SV\;=\;\frac{Qt}{HR}\;=\;\frac{\frac{VO_2}{arterial\; O_2 - venous\; O_2}}{HR}

where HR stands for heart rate. One obvious measure from the pulmonary catheter is the mean pulmonary artery pressure (mPAP). The right atrial pressure (RAP) is the blood pressure at the level of the right atrium. Pulmonary capillary wedge pressure (PCWP) is an estimation for the left atrial pressure. It is obtained by the pulmonary catheter. The mean arterial pressure (MAP) is the pressure measured by the radial artery catheter and it is a proxy for the pressure in the left atrium. RAP, mPAP, and PCWP are measured by the pulmonary catheter (the line in red) which from the right atrium goes through the tricuspid valve, enters the right ventricle, and then goes along the initial part of the pulmonary artery (figure 2).

Figure 2. Right atrial pressure (RAP) is the pressure of the right atrium, mean pulmonary arterial pressure (mPAP) is the pressure of the right ventricle, pulmonary capillary wedge pressure (PCWP) is an estimation of the pressure of the left atrium. Mean arterial pressure gives a measure of the pressure of the left ventricle. RAP, mPAP, and PCWP are measured by the pulmonary catheter (the line in red) which from the right atrium goes through the tricuspid valve, enters the right ventricle, and then goes across the initial part of the pulmonary artery (R).

Derived parameters. As seen, Qt (cardiac output) is derived from actual direct measures collected by this experimental setting, by using a simple mathematical model (Fick equation). Another derived parameter is pulmonary vascular resistance (PVR) which is obtained using the particular solution of the Navier-Stokes equations (the dynamic equation for Newtonian fluids) that fits the geometry of a pipe with a circular section. This solution is called the Poiseuille flow, and it states that the difference in pressure between the extremities of a pipe with a circular cross-section A and a length L is given by

\Delta\;P\;=\;\frac{8\pi\mu L}{A^2}Q

where \mu is a mechanical property of the fluid (called dynamic viscosity) and Q is the blood flow (Maccallini P. 2007). As the reader can recognize, this formula has a close resemblance with Ohm’s law, with P analogous to the electric potential, Q analogous to the current, and \frac{8\pi\mu L}{A^2} analogous to the resistance. In the case of PVR, Q is given by Qt while \Delta\;P\;=\;mPAP\;-\;PCWP. Then we have:

PVR\;=\;80\frac{\;mPAP\;-\;PCWP}{Qt}

where the numeric coefficient is due to the fact that PVR is usually measured in \frac{dyne\cdot s}{cm^5} and 1 dyne is 10^5 Newton while 1 mmHg is 1333 N/m².

2. Preload failure

A subset of patients with exercise intolerance presents with preload-dependent limitations to cardiac output. This phenotype is called preload failure  (PLF) and is defined as follows: RAP max < 8 mmHg, Qt and VO_2max <80% predicted, with normal mPAP (<25 mmHg) and normal PVR (<120 \frac{dyne\cdot s}{cm^5}) (Maron BA et al. 2013). This condition seems prevalent in ME/CFS and POTS. Some of these patients have a positive cutaneous biopsy for small-fiber polyneuropathy (SFPN), even though there seems to be no correlation between hemodynamic parameters and the severity of SFPN. Intolerance to exercise in PLF seems to improve after pyridostigmine administration, mainly through potentiation of oxygen extraction in the periphery. A possible explanation for PLF in non-SFPN patients might be a more proximal lesion in the autonomic nervous system (Urbina MF et al. 2018), (Joseph P. et al. 2019). In particular, 72% of PLF patients fits the IOM criteria for ME/CFS and 27% meets the criteria for POTS. Among ME/CFS patients, 44% has a positive skin biopsy for SFPN. One possible cause for damage to the nervous system (both in the periphery and centrally) might be TNF-related apoptosis-inducing ligand (TRAIL) which has been linked to fatigue after radiation therapy; TRAIL increases during iCPET among ME/CFS patients (see video below).

3. Latest updates from David Systrom

During the Massachusetts ME/CFS & FM Association and Open Medicine Foundation Fall 2020 Event on Zoom, David Systrom reported on the results of iCPET in a set of ME/CFS patients. The VO_2max is lower in patients vs controls (figure 3, up). As mentioned before, VO_2max is an index that includes contributions from cardiac performances, pulmonary efficiency, and oxygen extraction rate in the periphery. In other words, a low VO_2max gives us no explanation on why it is low. This finding seems to be due to different reasons in different patients even though the common denominator among all ME/CFS patients of this cohort is a low pressure in the right atrium during upright exercise (low RAP, figure 3, left). But then, if we look at the slope of Qt in function of VO_2 (figure 3, right) we find three different phenotypes. Those with a high slope are defined “high flow” (in red in figure 3). Then we have a group with a normal flow (green) and a group with a low flow (blue). If we look then at the ability to extract oxygen by muscles (figure 3, below) expressed by the ratio

\frac{arterial\;O_2 - venous\;O_2}{HB}

we can see that the high flow patients reach the lowest score. In summary, all ME/CFS patients of this cohort present with poor VO_2max and preload failure. A subgroup, the high flow phenotype, has poor oxygen extraction capacity at the level of skeletal muscles.

Figure 3. The results presented by David Systrom are here displayed around a schematic representation of the circulatory system. VO_2 is a global measure of the efficiency of the circulatory system. CO, which stands for cardiac output (indicated Qt in this blog post) is related to the output of the left half of the heart. RAP is the pressure of the right atrium. By Paolo Maccallini.

Now the problem is: what is the reason for the preload failure? And in the high flow phenotype, why the muscles can’t properly extract oxygen from blood? As mentioned, about 44% of ME/CFS patients in this cohort has SFPN but there is no correlation between the density of small-fibers in the skin biopsies and the hemodynamic parameters. Eleven patients with poor oxygen extraction (high flow) had their muscle biopsy tested for mitochondrial function (figure 4) and all but one presented a reduction in the activity of citrate synthase (fourth column): this is the enzyme that catalyzes the last/first step of Krebs cycle and it is considered a global biomarker for mitochondrial function. Some patients also have defects in one or more steps of the electron transport chain (fifth column) associated with genetic alterations (sixth column). Another problem in high flow patients might be a dysfunctional vasculature at the interface between the vascular system and skeletal muscles (but this might be true for the brain too), rather than poor mitochondrial function.

Figure 4. Eleven patients with high flow (poor oxygen extraction) underwent a muscle biopsy. Mitochondrial function has been assessed in these samples and all the patients but one presented a reduced activity for the enzyme citrate synthase (4th column). Defects in the oxygen transport chain and in the mitochondrial chromosome have also been documented in 4 of them (column 5th and column 6th).

The use of an acetylcholinesterase inhibitor (pyridostigmine) improved the ability to extract oxygen in the high flow group, without improving cardiac output, as measured with a CPET, after one year of continuous use of the drug. This might be due to better regulation of blood flow in the periphery. This paragraph is an overview of the following video:

4. Funding

The trial on the use of pyridostigmine in ME/CFS at the Brigham & Women’s Hospital by Dr. David Systrom is funded by the Open Medicine Foundation (R). This work is extremely important, as you have seen, both for developing diagnostic tools and for finding treatments for specific subgroups of patients. Please, consider a donation to the Open Medicine Foundation to speed up this research. See how to donate.


The equations of this blog post were written using \LaTeX (see this article).

Advertisement

Convegno nazionale sulla ME/CFS, Paolo Maccallini

Quello che segue è il mio intervento durante il convegno nazionale sulla ME/CFS tenutosi a Thiene,  tappa italiana dell’End ME/CFS Worldwide Tour. L’intervento è molto denso e veloce, ho dovuto condensare 4 anni di ricerche in 30 minuti. Qualcuno ha notato che sembravo dopato. Lo ero, letteralmente: ero alla fine di un lungo trattamento cortisonico e avevo assunto modafinil per la circostanza. Altrimenti non sarei riuscito. Le slide usate per questo intervento, insieme ad altre che non ho avuto modo di far vedere al convegno, sono disponibili qui. Sotto il video c’è un sommario del contenuto dell’intervento, e il momento del video in cui i vari argomenti sono stati trattati. Ringrazio Giuseppe Pozza per aver realizzato il video.

  • Note biografiche, criteri diagnostici e disturbi cognitivi (00:50)
  • Intolleranza ortostatica (08:39)
  • Citochine (09:45)
  • Citotossicità delle NK (11:15)
  • Disfunzioni metaboliche (12:40)
  • Anomalie del sistema nervoso centrale (20:50)
  • Anomalie del microbioma (22:40)
  • Analisi genetica (24:20)
  • La mia ricerca su Lyme e autoanticorpi (27:50)
  • Anticorpi anti-muscarinici e anti-beta adrenergici nella M/CFS (32:20)
  • Studi a cui ho partecipato come paziente, conclusioni e ringraziamenti (34:53)

Riascoltando il mio intervento ho provato stupore nel constare, forse per la prima volta, come la mia mente sia sopravvissuta. Solo io posso sapere cosa ho passato, nessuno sa che per gli ultimi 17 anni sono stato incapace di pensare per più del 90% del tempo. E non intendo incapace di risolvere sistemi di equazioni differenziali; no, intendo incapace di sostenere una conversazione o di leggere un libro.

Nonostante sia stata così colpita dalla malattia, nonostante sia stata privata di stimoli, nostante la solitudine estrema, i farmaci inutili e il consumarsi dei lustri, è sopravvissuta. Questo organo di un chilo e mezzo scarso che mi contiene tutto, che ha perso così tanto, che ho dato per spacciato tante volte, è sopravvissuto. La vita vuole vivere e non si arrende.

Neuropatia delle piccole fibre

Neuropatia delle piccole fibre

Introduzione

Le piccole fibre sono tratti del sistema nervoso periferico per lo più sprovvisti di guaina mielinica (fibre C). Innervano la pelle (fibre somatiche coinvolte nella percezione del dolore), gli organi interni, e sono anche coinvolte nella funzione del sistema nervoso autonomo (fibre autonomiche) (Devigili G et al. 2008).

Le piccole fibre del sistema nervoso autonomo sono tratti post-ganglionici tanto del ramo simpatico che del ramo parasimpatico. Le prime si dividono in piccole fibre simpatiche sudomotorie (coinvolte nella sudorazione e sono a trasmissione colinergica) e in piccole fibre simpatiche cardiache (regolano la frequenza e la pressione cardiaca e sono a trasmissione adrenergica); le seconde regolano la frequenza cardiaca e sono a trasmissione colinergica (Goodman BP 2007).

Test diagnostici

Il danno alle piccole fibre simpatiche sudomotorie si rileva con il quantitative sudomotor axon reflex test (QSART) che misura la fuoriuscita di sudore nei seguenti siti: avambraccio, fascia laterale prossimale della gamba, parte interna della gamba, piede (Goodman BP 2007).  Questo test è anormale in pazienti ME/CFS+POTS e in pazienti POTS non CFS (Okamoto LE et al. 2012).

Un altro modo di rilevare un danno alle piccole fibre è quello di misurare la loro densità nella pelle. A questo scopo si esegue una biopsia cutanea della profondità di 3 mm in due sedi: 10 cm sopra il malleolo e 10 cm sopra il ginocchio, e si esaminano le piccole fibre al microscopio. Si ottiene in questo modo la densità delle fibre nervose intra-epidermiche (IENFD): un valore <7/mm indica un danno (Goodman BP 2007). Non sono sicuro, ma credo che questo test misuri soprattutto danni alle fibre somatiche.

Test in Italia

La biopsia cutanea per la misura della densità delle piccole fibre si esegue presso la UOC III Clinica Neurologica IRCCS, Istituto Besta di Milano (dr. Giuseppe Lauria Pinter). La biopsia cutanea e i test di sudorazione vengono effettuati presso la Fondazione Salvatore Maugeri a Telese Terme (BN).

Neuropatia delle piccole fibre, POTS, ME/CFS e Lyme

Un danno alle piccole fibre si riscontra in svariate patologie, tra cui diabete, Sjogren, ipotiroidismo, malattia celiaca e altre (Devigili G et al. 2008). Nella POTS si ha una prevalenza di neuropatia delle piccole fibre significativamente maggiore che nelle persone sane. In uno studio del 2013 il 37% dei pazienti POTS (9/24) presentava una biopsia cutanea anormale, contro lo 0% dei controlli sani (Gibbons CH et al. 2013).  Non esistono studi sulla prevalenza della neuropatia delle piccole fibre nella ME/CFS, ma la sovrapponibilità tra ME/CFS e POTS (Okamoto LE et al. 2012) nonché casi aneddotici suggeriscono che un sottogruppo di pazienti ME/CFS possa essere portatore di questa malattia. Secondo David M. Systrom (Harward Medical School) la biopsia cutanea mostra la presenza di una neuropatia delle piccole fibre nel 70% dei suoi pazienti ME/CFS/FM/POTS (R). La neuropatia delle piccole fibre (biopsia cutanea positiva) è stata riportata anche nella malattia di Lyme, in almeno due pazienti (Younger DS. et Orsher S. 2010), (Feuer N. et Alaedini A. 2016).

Nella ME/CFS e nella POTS si può pensare che la neuropatia delle piccole fibre sia – almeno in parte e almeno in alcuni casi – la causa dei sintomi, più che una mera conseguenza (come succede invece nel diabete). E questo sarebbe dimostrato da uno studio retrospettivo della dr.ssa Oaklander (Harvard Medical School) in cui i pazienti migliorano a seguito di trattamento con immunoglobuline in vena.

 

Il dr. Afrin, l’attivazione mastocitaria, e le equazioni di Navier-Stokes

Il dr. Afrin, l’attivazione mastocitaria, e le equazioni di Navier-Stokes

Di Paolo Maccallini

Il dr. Lawrence Afrin è un informatico e medico impegnato nel campo della ematologia e dell’oncologia presso la University of Minnesota. La sua principale area di ricerca è attualmente quella delle malattie dei mastociti. Su questo argomento ha recentemente pubblicato un libro divulgativo (che non ho letto) e un esaustivo capitolo per un testo specialistico (che ho letto e trovato molto ben fatto), reperibile gratuitamente on line.

Nel video che si trova a questo link il dr. Afrin introduce in modo semplice, ma con dovizia di particolari, la sindrome da attivazione mastocitaria (MCAS), una patologia (o un insieme di patologie) relativamente nuova e poco conosciuta, definita esplicitamente solo nel 2007. La MCAS -spiega il dr. Afrin- sembra essere un disordine genetico, sotteso da un gruppo di polimorfismi del gene KIT, che porta a una attivazione abnorme di particolari globuli bianchi del sistema immunitario innato, i mastociti. Il gene KIT codifica per una proteina di membrana dei mastociti detta transmembrane tyrosine kinase receptor o anche CD117. Una particoare mutazione di questo gene (identificata con la sigla D816V) era già stata associata in precedenza a un’altra malattia dei mastociti, la mastocitosi, una rara condizione in cui si assiste a una proliferazione eccessiva dei mastociti. La MCAS condivide alcuni aspetti clinici della mastocitosi, ma è nettamente distinta da essa dalla mancanza dell’incremento del numero di mastociti nel midollo osseo.

La MCAS è caratterizzata da una grande varietà di sintomi, tra cui alcuni soggettivi, quali fatica e deficit cognitivi, e altri obiettivabili, come rash cutanei, ulcere, follicoliti, ipotensione, tachicardia, ridotta capacità di rimarginazione delle ferite con sanguinamento copioso; e tanti altri (Afrin, LB in Mast Cells, 2013). I sintomi possono essere cronicamente presenti, oppure alcuni di essi possono essere scatenati o peggiorati da dei fattori eterogenei, come l’attività fisica, particolari alimenti, infezioni, o sollecitazioni psichiche. Questo perché i mastociti sono sensibili a svariati parametri ambientali, da quelli chimici, a quelli meccanici, al contesto immunitario.

E’ stato già suggerito in passato un legame fra la MCAS e la CFS; in particolare è stato proposto che alcuni dei mediatori sintetizzati dai mastociti siano responsabili dei sintomi della CFS. I mediatori coinvolti sarebbero IL-1, IL-6, IL-8, TNF-alpha e la triptasi (Theoharides, TC et al. 2005). Ed effettivamente i primi quattro sono elevati nel siero dei pazienti CFS con una malattia della durata di meno di tre anni, per poi scendere con l’ulteriore passare del tempo (Hornig, M et al. 2015). Sfortunatamente questi 4 mediatori non sono sintetizzati esclusivamente dai mastociti, ma sono comunemente utilizzati dagli altri leucociti per scambiare messaggi nell’ambito del grande concerto della risposta immunitaria. Per esempio, la IL-6 è sintetizzata anche dalle cellule dendritiche, il TNF-alpha dai macrofagi, dai neutrofili e dalle Th1 etc (Sompayrac 2013). La triptasi è specifica invece dei mastociti, ma non è mai stata studiata nella CFS, fin ora. E’ previsto però il suo studio nella popolazione CFS da parte dell’NIH (vedi la seguente presentazione video, al minuto 46:10). Inoltre la stessa Mady Hornig (Columbia University) ha suggerito che l’istamina (un altro mediatore rilasciato dai mastociti) possa avere un ruolo nella CFS, alterando la pressione e altri parametri circolatori (articolo di Cort Johnson). In effetti una delle molteplici funzioni dell’istamina è la vasodilatazione. Facendo riferimendo a un modello semplificato della grande circolazione, in cui il cuore pompa il sangue in una conduttura a sezione circolare che si sviluppa tra il ventricolo sinistro e l’atrio destro, essendo il sangue approssimato come un fluido newtoniano e incomprimibile, vale l’equazione del flusso di Poiseuille: pouseille

dove p(0) è la pressione all’uscita del ventricolo sinistro, p(L) è la pressione all’ingresso dell’atrio destro, L è la lunghezza del condotto e ‘a’ è il suo raggio. Il flusso di Poiseuille rappresenta una soluzione paricolare delle equazioni che descrivono la meccanica dei fluidi newtoniani, dette equazioni di Navier-Stokes (Maccallini P, Meccanica dei Fluidi, 2007). Considerando che Q è la portata cardiaca ed è pertanto proporzionale -diciamo linearmente- alla frequenza cardiaca, si deduce che:

  1. una dilatazione dei vasi (aumento di ‘a’) determina -a parità di frequenza cardiaca- un calo della pressione sanguigna;
  2. per mantenere la pressione in presenza di una vasodilatazione il cuore può aumentare la sua frequenza.

Questa equazione dunque permette di spiegare in modo semplice come un eccesso di istamina potrebbe essere alla base sia di fenomeni di ipotensione, che di fenomeni di tachicardia, entrambi descritti nella CFS (Stewart, JL et al. 2016), ma anche nella malattia di Lyme (vedi in merito questo post).

Il legame fra mastociti e CFS è reso quanto mai attuale dalla recentissima pubblicazione di un piccolo studio da parte della Griffith University (Australia) in cui si riporta per la prima volta un aumento del numero dei mastociti con fenotipo CD117+CD34+FCepsilonRI- (mastociti immaturi) nel siero dei pazienti CFS, nonché una loro elevata propensione alla presentazione degli antigeni, con aumento della espressione del CD40 e del MHC-II (che dimostra uno stato di attivazione) (Nguyen T et al. 2016). In questo post propongo un ipotetico ruolo eziologico dei mastociti nella post-exertional malaise, basato sulla osservazione sperimentale che i mastociti sono attivati da attività fisiche di tipo particolare. In questo ulteriore post propongo invece l’ipotesi che l’insolita frequenza degli anticorpi anti-cardiolipina di sierotipo IgM nella CFS e nella neuroborreliosi, sia legata all’attivazione mastocitaria.

mastociti.jpg
Attivazione dei mastociti IgE-mediata. Disegno di Paolo Maccallini.

Nel video, il dr. Afrin suggerisce anche che la MCAS possa essere la vera causa di alcuni casi di Ehlers-Danlos di tipo ipermobile, condizione che di fatto ha una sorprendente associazione statistica sia con la MCAS (Cheung I, 2015) che con la CFS (Castori M, 2011) ed è ancora una diagnosi clinica. Il meccanismo suggerito consiste in una qualche azione distruttiva di uno o più mediatori dei mastociti sulla organizzazione del collagene.

I mediatori che possono essere misurati nel siero per supportare una diagnosi di MCAS sono elencati di seguito con la relativa sensibilità (Vysniauskaite, M et al 2015):

  1. eparina basale (41%);
  2. triptasi (10%);
  3. cromogranina A (12%);
  4. N-metilistamina (22%).

Di questi solo la triptasi e la cromogranina A (usata anche come marcatore tumorale) possono essere eseguiti in Italia. Ma come si vede, la sensibilità di questi due marcatori è modesta. Si ricorda che la sensibilità di un test è il numero di risultati positivi ottenuti in un campione di 100 persone che siano portatrici della malattia (Parikh, R  et al. 2008).

 

 

Intolleranza ortostatica, piridostigmina e infezioni

Intolleranza ortostatica, piridostigmina e infezioni

di Paolo Maccallini

Introduzione

Sono stati riportati nella malattia di Lyme, e in particolare nella PTLDS, casi compatibili con la sindrome della tachicardia posturale ortostatica (postural orthostatic tachycardia syndrome, POTS) (1), (2).

Intolleranza ortostatica

La POTS è un tipo di intolleranza all’ortostatismo (orthostatic intollerance, OI), definita dalla persistenza di sintomi di OI associati a un incremento di 30 pulsazioni al minuto o a una pulsazione maggiore di 120 b/m, dopo dieci minuti di postura eretta (vedi figura). Per la diagnosi di POTS non è richiesta la presenza di ipotensione ortostatica (un’altra forma di OI). I sintomi di OI si acuiscono quando si assume la posizione eretta e sono i seguenti: deficit cognitivi quali perdita di memoria, ridotta concentrazione e capacità di ragionamento (fino alla perdita di coscienza); difficoltà visive, vertigini, mal di testa, fatica, aumento o diminuzione pressoria, debolezza, nausea, dolore addominale, sudorazione anomala, tremori, e intolleranza allo sforzo. Questa sintomatologia migliora sdraiandosi. Le cause della OI in generale, e della POTS in particolare, possono essere ricondotte alle seguenti tipologie: una denervazione parziale del sistema circolatorio, uno stato iperadrenergico, decondizionamento (eccessiva sedentarietà o lunghi periodi di allettamento) (3), oppure la presenza di autoanticorpi (vedi sotto).

Intoleranza ortostatica nella Lyme

Almeno sette casi di POTS nella malattia di Lyme sono stati descritti finora in letteratura (1), (2) e in cinque di questi in particolare (caratterizzati da estrema fatica, deficit cognitivi e tendenza alla sincope) una remissione sintomatica è stata ottenuta utilizzando principalmente fludrocortisone e piridostigmina (1). Il fludrocortisone è un corticosteroide caratterizzato da bassa affinità per i recettori glucocorticoidi (e quindi da un effetto minimo o nullo sul sistema immunitario) ma da una buona attività mineralcorticoide che gli conferisce la possibilità di aumentare il volume ematico, con benefici in caso di ipotensione ortostatica. Si utilizzano dosaggi tra 0.1 e 0.2 mg/die. La piridostigmina è un inibitore della colinesterasi, l’enzima che degrada il neurotrasmettitore acetilcolina, e potenzia pertanto alcune funzioni del sistema nervoso autonomo. Si usa al dosaggio di 30-60mg, tre volte al giorno (4). Nella CFS -malattia che condivide in alcuni casi il quadro clinico della PTLDS- la POTS è ampiamente riportata, ed è inserita nei criteri diagnostici.

standing-test
In figura la pressione sanguigna e la frequenza cardiaca sono rilevati ad intervalli di 2-3 minuti durante uno ‘standing test’. Il soggetto giace supino per alcuni minuti, quindi si alza (linea verticale) tenendo la schina appoggiata a una parete, per i successivi 23 minuti circa. Si osserva un aumento progressivo del battito, che passa da poco più di 60 bpm a poco meno di 120. Questo soggetto soddisfa i criteri diagnositici per POTS.

Intolleranza ortostatica come sequela autoimmune

Gli autori dello studio sui cinque pazienti non hanno mancato di cogliere la somiglianza fra alcuni aspetti della POTS e la PTLDS (specialmente la fatica e i deficit cognitivi), e data anche la risposta alla piridostigmina, hanno avanzato l’ipotesi che la sintomatologia di questi soggetti possa essere stata prodotta da autoanticorpi contro i recettori ganglionali della acetilcolina (1). Effettivamente questa autoimmunità è associata a varie forme di disautonomia (tra cui la POTS) (5) e personalmente conosco una paziente con anticorpi anti-recettori ganglionali della acetilcolina, la quale presenta sierologia positiva per B. burgdorferi, clinica CFS e diagnosi di POTS. Altre possibili cause autoimmuni della POTS sono gli anticorpi contro i recettori adrenergici β1 e β2, rinvenuti recentemente sia nella POTS (6) che nella CFS (7).

Mestinon nella CFS

La pyridostigmina (Mestinon) è stata somministrata in Giappone nel 2003 a tre donne con una clinica compatibile con la sindrome da fatica cronica (CFS), disautonimia e sierologia positiva per EBV. Le tre pazienti hanno sperimentato una risposta marcata alla pyridostigmina a dosaggi da 10 a 30 mg die. In questi casi tuttavia gli Autori hanno ipotizzato la presenza di autoanticorpi contro i canali del calcio i quali ridurrebbero l’influsso di calcio al livello della giuntura neuro-muscolare, determinando una ridotta sintesi di acetilcolina (8).

Standing test

Il soggetto giace supino per 5 minuti, allo scopo di raggiungere un equilibrio nei propri parametri cardiaci. Quindi si alza e appoggia la schiena contro una parete, per i successivi 10 minuti. Pressione sanguigna e frequenza cardiaca vengono misurati ogni 2 minuti, e registrati (9). In alcuni soggetti, più dei classici 10 minuti potrebbero essere necessari per cogliere segni di intolleranza all’ortostatismo. Il test può essere eseguito in casa con strumenti quali un buon misuratore di pressione (evitare quelli da polso!), un cronometro e un foglio di carta. Un programma tipo Excel può essere utile (ma non necessario) a costruire il grafico. Lo standing test è descritto nel video che segue, dove vengono anche riporati dei risultati preliminari sul suo uso nella popolazione ME/CFS, secondo i quali circa il 70% dei pazienti manifesta POTS e/o OI.

Il video che segue è un seminario del dottor Peter Rowe, della Johns Hopkins University School of Medicine, sulla intolleranza ortostatica. Lo trovo un video molto utile e relativamente semplice.


 

Opere citate

  1. Kanjwal, K, et al. Postural orthostatic tachycardia syndrome following Lyme disease. Cardiol J. 2011, Vol. 18, 1, p. 63-6.
  2. Noyes, AM e Kluger, J. A tale of two syndromes: Lyme disease preceding postural orthostatic tachycardia syndrome. Ann Noninvasive Electrocardiol. Jan 2015, Vol. 20, 1, p. 82-6.
  3. Stewart, JM. Common syndromes of orthostatic intolerance. Pediatrics. . May 2013, Vol. 131, 5, p. 968-80.
  4. Figueroa, JJ, Basford, JR e Low, PA. Preventing and treating orthostatic hypotension: As easy as A, B, C. Cleve Clin J Med. May 2010 May, Vol. 77, 5, p. 298-306.
  5. Sandroni, P e Low, PA. Other autonomic neuropathies associated with ganglionic antibody. Auton Neurosci. . 12 Mar 2009, Vol. 146, 1-2.
  6. Li, H, et al. Autoimmune basis for postural tachycardia syndrome. J Am Heart Assoc. 26 Feb 2014, Vol. 3, 1.
  7. Loebel, M, et al. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. Brain Behav Immun. Feb 2016, Vol. 52, p. 32-9.
  8. Kawamura, Y, et al. Efficacy of a half dose of oral pyridostigmine in the treatment of chronic fatigue syndrome: three case reports. Pathophysiology. May 2003, Vol. 9, 3, p. 189-194.
  9. Rowe, P, et al. Orthostatic intollerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. Journal of Pediatrics. 1999, Vol 135,4,p. 494-499