A complete (preload) failure

In evidenzaA complete (preload) failure


Some days ago, David Systrom offered an overview of his work on cardiopulmonary testing in ME/CFS during a virtual meeting hosted by the Massachusetts ME/CFS & FM Association and the Open Medicine Foundation. In this blog post, I present an introduction to the experimental setting used for Systrom’s work (paragraph 1), a brief presentation of his previous findings (paragraph 2), and an explanation of his more recent discoveries in his cohort of patients (paragraph 3). In paragraph 4 you’ll find a note on how to support his research.

1. Invasive Cardiopulmonary Exercise Testing

It is a test that allows for the determination of pulmonary, cardiac, and metabolic parameters in response to physical exertion of increasing workload. It is, mutatis mutandis, the human equivalent of an engine test stand. A stationary bike with a mechanical resistance that increases by 10 to 50 Watts for minute is usually employed for assessing the patient in a upright position, but a recumbent bike can also be used in some instances. Distinguishing between these two different settings might be of pivotal relevance in ME/CFS and POTS. I shall now briefly describe some of the measurements that can be collected during invasive cardiopulmonary exercise testing (iCPET) and their biological meaning. For a more accurate and in-depth account, please refer to (Maron BA et al. 2013), (Oldham WM et al. 2016). I have used these papers as the main reference for this paragraph, unless otherwise specified.

Gas exchange. A face mask collects the gasses exchanged by the patient during the experiment and allows for monitoring of both oxygen uptake per unit of time (named VO_2) and carbon dioxide output (VCO_2), measured in mL/min. Gas exchange is particularly useful for the determination of the anaerobic threshold (AT), i.e. the point in time at which the diagram of VCO_2 in function of VO_2 displays an abrupt increase in its derivative: at this workload, the patient starts relying more on her anaerobic energy metabolism (glycolysis, for the most part) with a build-up of lactic acid in tissues and blood (see Figure 1).

Figure 1. Diagram of VCO_2 in function of VO_2. The point in which there is a change in the derivative with respect to VO_2 is called “anaerobic threshold” (AT). AT is highlighted with a vertical line in this picture. This diagram is from an actual CPET of a patient.

Oxygen uptake for unit of time at AT (called VO_2max) can be considered an integrated function of patient’s muscular, pulmonary, and cardiac efficiency during exercise. It is abnormal when its value is below 80% of what predicted according to patient’s age, sex, and height. Importantly, according to some studies there might be no difference in VO_2max between ME/CFS patients and healthy controls, unless the exercise test is repeated a day after the first measure: in this case the value maxVO_2 for patients is significantly lower than for controls (VanNess JM et al. 2007), (Snell CR and al. 2013).

Another measure derived from the assessing of gas exchange is minute ventilation (VE, measured in L/min) which represents the total volume of gas expired per minute. The link between VE and VO_2 is as follows:

VO_2\;=\;VE\cdot(inspired\;VO_2\; -\; expired\;VO_2)

Maximum voluntary ventilation (MVV) is the maximum volume of air that is voluntarily expired at rest. During incremental exercise, a healthy person should be able to maintain her VE at a value ∼0.7 MVV and it is assumed that if the ratio VE/MVV is above 0.7, then the patient has a pulmonary mechanical limit during exercise. If VE is normal, then an early AT suggests an inefficient transport of oxygen from the atmosphere to muscles, not due to pulmonary mechanics, thus linked to either pulmonary vascular abnormalities or muscular/mitochondrial abnormalities. It is suggested that an abnormally high derivative of the diagram of VE in function of VCO_2 and/or a high ratio VE/VCO_2 at AT (these are measures of how efficiently the system gets rid of CO_2) are an indicator of poor pulmonary vascular function.

Respiratory exchange ratio (RER) is a measure of the effort that the patient puts into the exercise. It is measured as follows:


and an RER>1.05 indicates a sufficient level of effort. In this case the test can be considered valid.

Arterial catheters. A sensor is placed just outside the right ventricle (pulmonary artery, Figure 2) and another one is placed in the radial artery: they allow for measures of intracardiac hemodynamics and arterial blood gas data, respectively. By using this setting, it is possible to indirectly estimate cardiac output (Qt) by using Fick equation:

Qt=\frac{VO_2}{arterial\;O_2 - venous\;O_2}

where the arterial\;O_2 is measured by the radial artery catheter and the venous one is measured by the one in the pulmonary artery (ml/L). An estimation for an individual’s predicted maximum Qt (L/min) can be obtained by dividing her predicted VO_2max by the normal maximum value of  arterial\;O_2 - venous\;O_2 during exercise, which is 149 mL/L:

predicted\; Qt\;max=\frac{predicted\; VO_{2}max}{149 \frac{mL}{L}}

If during iCPET the measured Qt max is below 80% of the predicted maximum cardiac output (as measured above), associated with reduced VO_2max, then a cardiac abnormality might be suspected. Stroke volume (SV), defined as the volume of blood ejected by the left ventricle per beat, can be obtained from the Qt according to the following equation:

Qt=SV\cdot HR\;\xrightarrow\;SV\;=\;\frac{Qt}{HR}\;=\;\frac{\frac{VO_2}{arterial\; O_2 - venous\; O_2}}{HR}

where HR stands for heart rate. One obvious measure from the pulmonary catheter is the mean pulmonary artery pressure (mPAP). The right atrial pressure (RAP) is the blood pressure at the level of the right atrium. Pulmonary capillary wedge pressure (PCWP) is an estimation for the left atrial pressure. It is obtained by the pulmonary catheter. The mean arterial pressure (MAP) is the pressure measured by the radial artery catheter and it is a proxy for the pressure in the left atrium. RAP, mPAP, and PCWP are measured by the pulmonary catheter (the line in red) which from the right atrium goes through the tricuspid valve, enters the right ventricle, and then goes along the initial part of the pulmonary artery (figure 2).

Figure 2. Right atrial pressure (RAP) is the pressure of the right atrium, mean pulmonary arterial pressure (mPAP) is the pressure of the right ventricle, pulmonary capillary wedge pressure (PCWP) is an estimation of the pressure of the left atrium. Mean arterial pressure gives a measure of the pressure of the left ventricle. RAP, mPAP, and PCWP are measured by the pulmonary catheter (the line in red) which from the right atrium goes through the tricuspid valve, enters the right ventricle, and then goes across the initial part of the pulmonary artery (R).

Derived parameters. As seen, Qt (cardiac output) is derived from actual direct measures collected by this experimental setting, by using a simple mathematical model (Fick equation). Another derived parameter is pulmonary vascular resistance (PVR) which is obtained using the particular solution of the Navier-Stokes equations (the dynamic equation for Newtonian fluids) that fits the geometry of a pipe with a circular section. This solution is called the Poiseuille flow, and it states that the difference in pressure between the extremities of a pipe with a circular cross-section A and a length L is given by

\Delta\;P\;=\;\frac{8\pi\mu L}{A^2}Q

where \mu is a mechanical property of the fluid (called dynamic viscosity) and Q is the blood flow (Maccallini P. 2007). As the reader can recognize, this formula has a close resemblance with Ohm’s law, with P analogous to the electric potential, Q analogous to the current, and \frac{8\pi\mu L}{A^2} analogous to the resistance. In the case of PVR, Q is given by Qt while \Delta\;P\;=\;mPAP\;-\;PCWP. Then we have:


where the numeric coefficient is due to the fact that PVR is usually measured in \frac{dyne\cdot s}{cm^5} and 1 dyne is 10^5 Newton while 1 mmHg is 1333 N/m².

2. Preload failure

A subset of patients with exercise intolerance presents with preload-dependent limitations to cardiac output. This phenotype is called preload failure  (PLF) and is defined as follows: RAP max < 8 mmHg, Qt and VO_2max <80% predicted, with normal mPAP (<25 mmHg) and normal PVR (<120 \frac{dyne\cdot s}{cm^5}) (Maron BA et al. 2013). This condition seems prevalent in ME/CFS and POTS. Some of these patients have a positive cutaneous biopsy for small-fiber polyneuropathy (SFPN), even though there seems to be no correlation between hemodynamic parameters and the severity of SFPN. Intolerance to exercise in PLF seems to improve after pyridostigmine administration, mainly through potentiation of oxygen extraction in the periphery. A possible explanation for PLF in non-SFPN patients might be a more proximal lesion in the autonomic nervous system (Urbina MF et al. 2018), (Joseph P. et al. 2019). In particular, 72% of PLF patients fits the IOM criteria for ME/CFS and 27% meets the criteria for POTS. Among ME/CFS patients, 44% has a positive skin biopsy for SFPN. One possible cause for damage to the nervous system (both in the periphery and centrally) might be TNF-related apoptosis-inducing ligand (TRAIL) which has been linked to fatigue after radiation therapy; TRAIL increases during iCPET among ME/CFS patients (see video below).

3. Latest updates from David Systrom

During the Massachusetts ME/CFS & FM Association and Open Medicine Foundation Fall 2020 Event on Zoom, David Systrom reported on the results of iCPET in a set of ME/CFS patients. The VO_2max is lower in patients vs controls (figure 3, up). As mentioned before, VO_2max is an index that includes contributions from cardiac performances, pulmonary efficiency, and oxygen extraction rate in the periphery. In other words, a low VO_2max gives us no explanation on why it is low. This finding seems to be due to different reasons in different patients even though the common denominator among all ME/CFS patients of this cohort is a low pressure in the right atrium during upright exercise (low RAP, figure 3, left). But then, if we look at the slope of Qt in function of VO_2 (figure 3, right) we find three different phenotypes. Those with a high slope are defined “high flow” (in red in figure 3). Then we have a group with a normal flow (green) and a group with a low flow (blue). If we look then at the ability to extract oxygen by muscles (figure 3, below) expressed by the ratio

\frac{arterial\;O_2 - venous\;O_2}{HB}

we can see that the high flow patients reach the lowest score. In summary, all ME/CFS patients of this cohort present with poor VO_2max and preload failure. A subgroup, the high flow phenotype, has poor oxygen extraction capacity at the level of skeletal muscles.

Figure 3. The results presented by David Systrom are here displayed around a schematic representation of the circulatory system. VO_2 is a global measure of the efficiency of the circulatory system. CO, which stands for cardiac output (indicated Qt in this blog post) is related to the output of the left half of the heart. RAP is the pressure of the right atrium. By Paolo Maccallini.

Now the problem is: what is the reason for the preload failure? And in the high flow phenotype, why the muscles can’t properly extract oxygen from blood? As mentioned, about 44% of ME/CFS patients in this cohort has SFPN but there is no correlation between the density of small-fibers in the skin biopsies and the hemodynamic parameters. Eleven patients with poor oxygen extraction (high flow) had their muscle biopsy tested for mitochondrial function (figure 4) and all but one presented a reduction in the activity of citrate synthase (fourth column): this is the enzyme that catalyzes the last/first step of Krebs cycle and it is considered a global biomarker for mitochondrial function. Some patients also have defects in one or more steps of the electron transport chain (fifth column) associated with genetic alterations (sixth column). Another problem in high flow patients might be a dysfunctional vasculature at the interface between the vascular system and skeletal muscles (but this might be true for the brain too), rather than poor mitochondrial function.

Figure 4. Eleven patients with high flow (poor oxygen extraction) underwent a muscle biopsy. Mitochondrial function has been assessed in these samples and all the patients but one presented a reduced activity for the enzyme citrate synthase (4th column). Defects in the oxygen transport chain and in the mitochondrial chromosome have also been documented in 4 of them (column 5th and column 6th).

The use of an acetylcholinesterase inhibitor (pyridostigmine) improved the ability to extract oxygen in the high flow group, without improving cardiac output, as measured with a CPET, after one year of continuous use of the drug. This might be due to better regulation of blood flow in the periphery. This paragraph is an overview of the following video:

4. Funding

The trial on the use of pyridostigmine in ME/CFS at the Brigham & Women’s Hospital by Dr. David Systrom is funded by the Open Medicine Foundation (R). This work is extremely important, as you have seen, both for developing diagnostic tools and for finding treatments for specific subgroups of patients. Please, consider a donation to the Open Medicine Foundation to speed up this research. See how to donate.

The equations of this blog post were written using \LaTeX.

Immunosignature analysis of a ME/CFS patient. Part 1: viruses

Immunosignature analysis of a ME/CFS patient. Part 1: viruses

“Each hypothesis suggests its own criteria, its own means of proof, its own methods of developing the thruth; and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich.”

Thomas Chrowder Chamberlain, “The Method of Multiple Working Hypotheses” (Download)

The purpose of the following analysis is to search for the viral epitopes that elicited – in a ME/CFS patient – IgGs against a set of 6 peptides, determined thanks to an array of 150.000 random peptides of 16 amino acids each. These peptides were used as query sequences in a BLAST search against viral proteins. No human virus was found. Three phages of bacterial human pathogens were identified, belonging to the classes Actinobacteria and γ-Proteobacteria. One of these bacteria, Serratia marcescens, was identified in a similar study on 21 ME/CFS cases.  

(a commentary in Dutch is available here)

1. The quest for a pathogen

Scientists have been speculating about an infectious aetiology of ME/CFS for decades, without ever being able to link the disease to a specific pathogen. The idea that the disease might be triggered and/or maintained by an infection is due to the observation that for most of the patients the onset occurs after an infectious illness (Chu, L. et al. 2019). It has also been observed that after a major infection (whether parasitic, viral or bacterial) about 11% of the population develops ME/CFS (Mørch K et al. 2013), (Hickie I. et al. 2006).

In recent years, the advent of new technologies for pathogen hunting has given renewed impulse to the search for ongoing infection in this patient population. A 2018 study, investigating the genetic profile of peripheral blood for prokaryotic and eukaryotic organisms reported that most of the ME/CFS patients have DNA belonging to the eukaryotic genera Perkinsus and Spumella and to the prokaryotic class β-proteobacteria (alone or in combination) and that these organisms are statistically more present in patients than in controls (Ellis J.E. et al. 2018). Nevertheless, a previous metagenomic analysis of plasma by another group revealed no difference in the content of genetic material from bacteria and viruses between ME/CFS patients and healthy controls (Miller R.R. et al. 2016). Moreover, metagenomic analysis pursued in various samples from ME/CFS patients by both Stanford University and Columbia University has come empty (data not published, R, R).

2. Immunological methods

Another way of investigating the presence of current and/or past infections that might be specific of this patient population is to extract the information contained in the adaptive immune response. This can be made in several ways, each of them having their own limits. One way would be to collect the repertoire of T cell receptors (TCRs) of each patient and see if they have been elicited by some particular microorganism. This is a very complex and time-consuming method that has been developed in recent years and that I have described in details going through all the recent meaningful publications (R). The main limitation of this method is that, surprisingly, TCRs are not specific for a single epitope (Mason DA 1998), (Birnbaum ME et al. 2014), so their analysis is unlikely to reveal what agent selected them. On the other hand, the advantage of this method is that T cell epitopes are linear ones, so they are extremely suited for BLAST searches against protein databases. An attempt at applying this method to ME/CFS is currently underway: it initially gave encouraging results (R), then rejected by further analysis.

Another possible avenue for having access to the information registered by adaptive immunity is to investigate the repertoire of antibodies. The use of a collection of thousands of short random peptides coated to a plate has been recently proposed as an efficient way to study the response of B cells to cancer (Stafford P. et al. 2014), infections (Navalkar K.A. et al. 2014), and immunization (Legutki JB et al. 2010). This same method has been applied to ME/CFS patients and it has shown the potential of identifying an immunosignature that can differentiate patients from controls (Singh S. et al. 2016), (Günther O.P. et al. 2019). But what about the antigens eliciting that antibody profile? Given a set of peptides one’s antibodies react to, a possible solution for interpreting the data is to use these peptides as query sequences in a BLAST search against proteins from all the microorganisms known to infect humans. This has been done for ME/CFS, and the analysis led to several matches among proteins from bacteria, viruses, endogenous retroviruses and even human proteins (in fact, both this method and the one previously described can detect autoimmunity as well) (Singh S. et al. 2016).  There are several problems with this approach, though. First of all, the number of random peptides usually used in these arrays is not representative of the variety of possible epitopes of the same length present in nature. If we consider the paper by Günther O.P. and colleagues, for instance, they used an array of about 10^5 random peptides with a length of 12 amino acids each, with the number of all the possible peptides of the same length being  20^12 ∼ 4·10^15. This means that many potential epitopes one has antibodies to are not represented in the array. Another important limitation is that B cell epitopes are mainly conformational ones, which means that they are assembled by the folding of the proteins they belong to (Morris, 2007), the consequence of this being that the subset of random peptides one’s serum react to are in fact linear epitopes that mimic conformational ones (they are often called mimotopes) (Legutki JB et al. 2010). This means that a BLAST search of these peptides against a library of proteins from pathogens can lead to completely misleading results.

Recently an array of overlapping peptides that cover the proteins for many know viruses has been successfully used for the study of acute flaccid myelitis (AFM). This technology, called VirScan, has succeeded in linking AFM to enteroviruses where metagenomic of the cerebrospinal fluid has failed (Shubert R.D. et al. 2019). This kind of approach is probably better than the one employing arrays of random peptides, for pathogen hunting. The reason being that a set of only 150.000 random peptides is unlikely to collect a significant amount of B cell epitopes from viruses, bacteria etc. Random peptides are more suited for the establishment of immunosignatures.

3. My own analysis

I have recently got access to the results of a study I was enrolled in two years ago. My serum was diluted and applied to an array of 150.000 peptides with a length of 16 random amino acids (plus four amino acids used to link the peptides to the plate). Residues Threonine (T), Isoleucine (I) and Cysteine (C) were not included in the synthesis of peptides. Anti-human-IgG Ab was employed as a secondary antibody. The set of peptides my IgGs reacted to has been filtered with several criteria, one of them being subtracting the immune response common to healthy controls, to have an immune signature that differentiates me from healthy controls. The end result of this process is the set of the following six peptides.


Table 1. My immunosignature, as detected by an array of 150.000 random peptides 20-amino-acid long, four of which are used for fixing them to the plate and are not included here.

The purpose of the following analysis is to search for the viral epitopes that elicited this immune response. To overcome the limitations enumerated at the end of the previous paragraph I have decided to search within the database of viral proteins for exact matches of the length of 7 amino acids. Why this choice? A survey of a set of validated B cell epitopes found that the average B cell epitope has a linear stretch of 5 amino acids (Kringelum, et al., 2013); according to another similar work, the average linear epitope within a conformational one has a length of 4-7 amino acids (Andersen, et al., 2006). To filter the matches and to reduce the number of matches due to chance, I opted for the upper limit of this length. I excluded longer matches to limit the number of mimotopes for conformational epitopes. Moreover, I decided to look only for perfect matches (excluding the possibility of gaps and substitutions) so to simplify the analysis. It is worth mentioning that a study of cross-reactive peptides performed for previous work (Maccallini P. 2016), (Maccallini P. et al. 2018) led me to the conclusion that cross-reactive 7-amino-acid long peptides might often have 100% identity.

Figure 1. For each match, the matching protein and the organism it belongs to are reported. The protein ID has a link to the NCBI protein database, while the name of the organism has a link to the NCBI taxonomy browser. The host of the microorganism is also indicated, as well as its habitat, with links to further information.

So, to recap, I use the following method: BLAST search (blastp algorithm) against viral proteins (taxid 10239), a perfect match (100% identity) of at least 7-amino-acid peptides (≥43% query cover), max target sequences: 1000, substitution matrix: BLOSUM62.

4. Results

Table 2 is a collection of the matches I found with the method described above. You can look at figure 1 to see how to read the table.

ALHHRHVGLRVQYDSG (102_1_F_viruses)
Prokaryotic dsDNA virus sp.
Archea, Ocean
Terrestrivirus sp
Amoeba, forest soil
ALHRHRVGPQLQSSGS (102_2_F_viruses)
Stenotrophomonas phage vB_SmaS_DLP_5
Stenotrophomonas maltophilia (HP)
ALHRRQRVLSPVLGAS (102_3_F_viruses)
QHN71154.1 (288-294)
Mollivirus kamchatka
Protozoa (R)
QDB71078.1 (24-30)
Serratia phage Moabite
Serratia marcescens (HP)
ALHRVLSEQDPQLVLS (102_4_F_viruses)
BAR30981.1 (151-157)
uncultured Mediterranean phage uvMED
Archea and Bacteria, Med. sea
AXS67723.1 (494-500)
Cryptophlebia peltastica nucleopolyhedrovirus
YP_009362111.1 (74-80)
Marco virus
Ameiva ameiva
ALHLHRHVLESQVNSL (102_6_F_viruses)
YP_009119106.1 (510-516)
Pandoravirus inopinatum
ASZ74651.1 (61-67)
Mycobacterium phage Phabba
Mycobacterium smegmatis mc²155 (HP)

Table 2. Collection of the matches for the BLAST search of my unique set of peptides against viral proteins (taxid 10239). HP: human pathogen. See figure 1 for how to read the table.

5. Discussion

There are no human viruses detected by this search. There are some bacteriophages and three of them have as hosts bacteria that are known to be human pathogens. Bacteriophages (also known as phages) are viruses that use the metabolic machinery of prokaryotic organisms to replicate (figure 2). It is well known that bacteriophages can elicit specific antibodies in humans: circulating IgGs to naturally occurring bacteriophages have been detected (Dąbrowska K. et al. 2014) as well as specific antibodies to phages injected for medical or experimental reasons (Shearer WT et al. 2001), as reviewed here: (Jonas D. Van Belleghem et al. 2019). According to these observations, one might expect that when a person is infected by a bacterium, this subject will develop antibodies not only to the bacterium itself but also to its phages.

Figure 2. Half of all viruses have an almost regular icosahedral shape, but several phages present an irregular icosahedral shape, with a prolate capsid (Luque and Reguera 2013). On the left a wrong representation of a phage. It is wrong because the capsid has 24 faces, instead of 20. On the right, the representation of a regular icosahedron made by Leonardo Da Vinci for De Divina Proportione, a mathematical book by Luca Pacioli.

If that is the case, we can use our data in table 2 to infer a possible exposure of our patient to the following bacterial pathogens: Stenotrophomonas maltophilia (HP), Serratia marcescens (HP), Mycobacterium smegmatis mc²155 (HP). In brackets, there are links to research about the pathogenicity for humans of each species. M. smegmatis belongs to the class Actinobacteria, while S. maltophila and S. marcescens are included in the class γ-Proteobacteria.

Interesting enough, Serratia marcescens was identified as one of the possible bacterial triggers for the immunosignature of a group of 21 ME/CFS patients, in a study that employed an array of 125.000 random peptides (Singh S. et al. 2016). This bacterium accounts for rare nosocomial infections of the respiratory tract, the urinary tract, surgical wounds and soft tissues. Meningitis caused by Serratia marcescens has been reported in the pediatric population (Ashish Khanna et al. 2013).

Mollivirus kamchatka is a recently discovered giant virus whose hosts are presumed to be protozoa that inhabit the soil of subarctic environment (Christo-Fourox E. et al. 2020). Not sure what the meaning might be in this context.

6. Next step

The next step will be to perform a similar BLAST search against bacterial proteins to see, among other things,  if I can find matches with the six bacteria identified by the present analysis. A further step will be to pursue an analogous study for eukaryotic microorganisms and for human proteins (in search for autoantibodies).

Is it all in your neck?

Is it all in your neck?

1. Introduction

Recently there have been some anecdotal reports of patients with a diagnosis of ME/CFS who met the criteria for a diagnosis of craniocervical instability (CCI). After surgical fusion of this joint, they reported improvement in some of their symptoms previously attributed to ME/CFS (R, R). After some reluctance, given the apparently unreasonable idea that there could be a link between a mechanical issue and ME/CFS, I decided to look at this avenue. So here I am, with this new blog post. In paragraph 2, I introduce some basic notions about the anatomy of the neck. In paragraph 3, I describe three points that can be taken from the middle slice of the sagittal sections of the standard MR study of the brain. These points can be used to find four lines (paragraph 4) and these four lines are the basis for quantitative diagnosis of craniocervical instability (paragraph 5-10). In paragraph 11, I describe CCI. In paragraph 12, I discuss the possible link between craniocervical instability and ME/CFS. In paragraph 13, there is a collection of measures from the supine MRIs of some ME/CFS patients. In the last paragraph, I propose an alternative definition of CCI, with the introduction of Euler’s angles.

Sagital section 1 bis.jpg
Figure 1. Left. The midline slice of the set of sagittal sections of an MR study of the brain of the author of this article. In the lower part of the image, we can see the section of the axis, with the odontoid process wedged between the anterior arch of the atlas and the ventral layer of the dura. The posterior arch of the atlas can also be seen just below the posterior edge of the foramen magnum. Above the foramen magnum, the brainstem with its three components: the medulla (or medulla oblongata), pons, and midbrain. Right. Lateral-posterior view of the atlas and the axis. They make up a one degree of freedom kinematic pair with the rotation axis corresponding to the axis of the odontoid. By Paolo Maccallini.

2. Basic anatomy

The craniocervical (or craniovertebral) junction (CCJ) is a complex joint that includes the base of the skull (occipital bone, or occiput), the first cervical vertebra (atlas or C1), the second cervical vertebra (axis or C2), and all the ligaments that connect these bones (Smoker WRK 1994). This joint encloses the lower part of the brainstem (medulla oblongata) and the upper trait of the spinal cord, along with the lower cranial nerves (particularly the tenth cranial nerve, the vagus nerve). Since the CCJ is included in the series of sagittal sections of every MR study of the brain, its morphology can be easily assessed (figure 1, left). It is worth mentioning that the CCJ is the only joint of the body that encloses part of the brain. The atlas and the axis are represented with more detail in figure 1 (right), where their reciprocal interaction has been highlighted. From a mechanical point of view, these two bones make up a revolute joint, with the rotation axis going through the odontoid process. This is only a simplification, though, because while it is true that the atlantoaxial joint provides mainly axial rotation,  there are also 20 degrees of flexion/extension and 5 degrees of lateral bending, which means that spherical joint would be a more appropriate definition. Other degrees of freedom are provided at the level of the occipital atlantal joint, where 25 degrees of motion are provided for flexion/extension, 5 degrees of motion are provided for one side lateral bending and other 10 degrees are provided for axial rotation (White A. & Panjabi M.M. 1978).

3. Points

The measurement of the Grabb’s line and of the clival-canal angle is based on a simple algorithm which starts with the identification of three points on the midline sagittal image of a standard MRI scan of the head (figure 2). In order to find this particular slice, search for the sagittal section where the upper limit of the odontoid process reaches its highest and/or the slice with the widest section of the odontoid process. This algorithm is mainly taken from (Martin J.E. et al. 2017). In looking at T1-weighted images, always keep in mind that cortical bone (and cerebrospinal fluid too) gives a low signal (black strips) while marrow bone gives a high signal (bright regions) (R).

  • Clival point (CP). It is the most dorsal extension of the cortical bone of the clivus at the level of the sphenooccipital suture. This suture can’t be seen clearly in some cases (figure 3 is one of these cases). So another definition can be used for CP: it is the point of the dorsal cortical bone of the clivus at 2 centimetres above the Basion (see next point).
  • Basion (B). It is the most dorsal extension of the cortical bone of the clivus. This is the easiest one to find!
  • Ventral cervicomedullary dura (vCMD). This is the most dorsal point of the ventral margin of the dura at the level of the cervicomedullary junction. I find this point the most difficult to search for and somehow poorly defined, but this is likely due to my scant anatomical knowledge.
  • Posteroinferior cortex of C-2 (PIC2). It is the most dorsal point of the inferior edge of C2.

Figure 2. This is the median slice from the sagittal sections of a T1-weighted magnetic resonance of the head. In blue, the three points used for the measure of the Grabb’s line and of the clival-canal angle. In red, the definitions of rostral, caudal, ventral and dorsal. By Paolo Maccallini.

4. Lines

Connecting the three points found in the previous paragraph allows us to define four lines (figure 3) that will be then used to calculate the Grabb’s measure and the clival-canal angle.

  • Clival slope (CS). It connects CP to vCMD. It is also called the Wackenheim Clivus Baseline (Smoker W.R.K. 1994).
  • Posterior axial line (PAL). It connects vCMD to PIC2.
  • Basion-C2 line (BC2L). It connects B to PIC2.
  • Grabb’s line (GL). It is the line from vCMD that is orthogonal with BC2L.

We now know all we need in order to take two of the most important measures for the assessment of craniocervical junction abnormalities.

Sagital section 4.jpg
Figure 3. On this middle sagittal section, the points CP, B, vCMD and PIC2 have been reported. Since the sphenooccipital suture is not clearly visible, the point CP has been identified measuring 2 centimetres from B, along the dorsal cortical bone. The lines CS, PAL, BC2L and GL have then been identified. The Grabb’s measure is of 0.8 centimetres while the clival-canal angle is 142°. By Paolo Maccallini.

5. The clival-canal angle and its meaning

The clival-canal angle (CXA) is the angle between CS and PAL. The value of this angle for the individual whose scan is represented in figure 4 is 142°. This angle normally varies from a minimum of 150° in flexion to a maximum of 180° in extension (Smoker WRK 1994). Ence, what we should normally see in a sagittal section from an MR scan of the brain is an angle between these two values. A value below 150° is often associated with neurological deficits according to (VanGilder J.C. 1987) and it is assumed that a CXA below 135° leads to injury of the brainstem (Henderson F.C. et al. 2019). A clival canal angle below 125° is considered to be predictive of CCI according to (Joaquim A.F. et al. 2018). In a study on 33 normal subjects employing standard MRI, CXA was measured in the sagittal section of each subject: this group had a mean value of 148° with a standard deviation of 9.88°; the minimum value was 129° and the maximum one was 175° (Botelho R.V. et al. 2013). The reader may have noted that the mean CXA in this study is below the cutoff for neurological deficits according to the 1987 book. This might be due to the fact that there is a difference between the measure taken on an MRI sagittal section and the one taken on radiographic images.

It has been demonstrated with a mathematical model that a decrease in the clival-canal angle produces an increase in the Von Mises stress within the brainstem and it correlates with the severity of symptoms (Henderson FC. et al. 2010). Von Mises stress gives an overall measure of how the state of tension applied to the material (the brainstem in this case) causes a change in shape. For those who are interested in the mathematical derivation of this quantity (otherwise, just skip the equations), let’s assume that the stress tensor in a point P of the brainstem is given by

stress tensor.JPG

Then it is possible to prove that the elastic potential energy due to change in shape stored by the material in that point is given by

deviatoric elastic energy.JPG

where E and ν are parameters that depend on the material. Since in monoaxial stress with a module σ the formula above gives


by comparison, we obtain a stress (called Von Mises stress) that gives an idea of how the state of tensions contributes to the change of shape of the material:

Von Mises.JPG

In the brainstem, this parameter – as said – appears to be inversely proportional to the clival-canal angle and directly proportional to the neurological complaints of patients, according to (Henderson FC. et al. 2010). For a complete mathematical discussion of Von Mises stress, you can see chapter 13 of my own handbook of mechanics of materials (Maccalini P. 2010), which is in Italian though.

Figure 4. Left. ME/CFS patient, female. The clival-canal angle is 146° while the Grabb’s measure is 0.8 cm. Right. ME/CFS patient, male. The clival-canal angle is 142° while the Grabb’s measure is about 0.6 cm. By Paolo Maccallini.

6. The Grabb’s measure and its meaning

The Grabb’s measure is the length of the segment on the Grabb’s line whose extremes are vCMD and the point in which the Grabb’s line encounters the Basion-C2 line. In figure 4 this measure is 0.8 centimetres. This measure has been introduced for the first time about twenty years ago with the aim of objectively measuring the compression of the ventral brainstem in patients with Chiari I malformation. A value greater or equal to 9 mm indicates ventral brainstem compression (Grabb P.A. et al. 1999). In a set of 5 children with Chiari I malformation and/or basal invagination (which is the prolapse of the vertebral column into the skull base) a high Grabb’s measure was associated with a low clival canal angle (Henderson FC. et al. 2010). When using MRI, it is assumed that values above 9 mm is abnormal (R) but I have not been able to find statistical data on this measure in MRIs of healthy individuals. Moreover, the study by Grabb was mainly on a pediatric population (38 children and two adults) with Chiari malformation. So it is unclear if these measures can be used to assess the CCJ in adults. The measure was made on sagittal sections of MRIs.

The CXA only takes into account osseous structures (it depends on the reciprocal positions between the body of the axis and the clivus), so it can potentially underestimate soft tissue compression by the retro-odontoid tissue. This problem can be addressed with the introduction of the Grabb’s measure (Joaquim A.F. et al. 2018). Nevertheless, we can assume that they both measure the degree of ventral brainstem compression, and if you look at figure 3 you realize that as the angle opens up, the Grabb’s measure becomes shorter. Points and lines described in these paragraphs for two more patients are represented in figure 4.

7. Horizontal Harris measure

Another measure that has been introduced to check the anatomical relationship between the skull and the Atlas is the distance between PAL and point B (figure 5). This measure has been introduced in (Harris J.H. e al. 1993) where it was performed in 400 adults and with a normal cervical spine and in 50 healthy children. In the first group, 96% of the individuals had a distance of the basion from PAL longer than 1-4 mm and shorter than 12 mm. All the children had a distance below 12 mm. This measure has been used recently to assess craniocervical instability in hypermobile patients (Henderson F.C. et al. 2019), along with the Grabb’s measure and the clival-canal angle. We will refer to this measure as HHM. It is important to mention that the study by Harris was based on radiographs, so it is unclear if they can be used for a comparison of measures taken from MRI sagittal sections. Yet a measure below 12 mm was considered normal in a study employing MRI (Henderson F.C. et al. 2019).

Figure 5. The Horizontal Harris measure in the sagittal section of the MRI of a patient. Highlighted by the red arrow. By Paolo Maccallini.

8. Distance between Chamberlain’s line and the odontoid process

Another measure that has been introduced to determine whether occipitovertebral relationship is normal or not is the distance between the Chamberlain’s line and the closest point of the tip of the odontoid process (also called dens) (figure 6). The Chamberlain’s line extends between the posterior pole of the hard palate and the posterior margin of the foramen magnum (called opisthion) (Smoker W.R.K. 1994). In a study on 200 healthy European adults employing standard MRI, this measure was taken from the T1 weighted sagittal section of each subject. Measures start from the cortical bone, i.e. from the dark signal. The mean was -1.2 mm with a standard deviation SD = 3 mm (Cronin C.G. et al. 2007). The minus before the number indicates that the mean position of the selected point of the dens is below the line.

Andrea Catenacci Chamberlain.JPG
Figure 6. Chamberlain’s line (in red). The distance between the Chamberlain’s line and the closest point of the tip of the dens is – 4 mm, in this subject. The minus before the number indicates that the selected point of the dens is below the line. By Paolo Maccallini.

9. Distance between McRae’s line and the odontoid process

McRae’s line is drawn from the anterior margin of the foramen magnum (basion) to its posterior border (opisthion). It was introduced in 1953 to assess normality at the level of the CCJ (McRae D.L. et Barnum A.S. 1953). The distance between McRae’s line and the closest point of the tip of the dens can be used, as in the case of Chamberlain’s line, to assess abnormality of the CCJ along the z-axis (figure 7). In a study on 200 healthy European adults employing standard MRI, this measure was taken from the T1 weighted sagittal section of each subject. Measures start from the cortical bone, i.e. from the dark signal. The mean was -4.6 mm with a standard deviation SD = 2.6 mm (Cronin C.G. et al. 2007). The minus before the number indicates that the mean position of the selected point of the dens is below the line. In normal individuals, the dens is always below the McRae’s line (McRae D.L. et Barnum A.S. 1953), (Cronin C.G. et al. 2007).

Andrea Catenacci McRae
Figure 7. McRae’s line (in green). The distance between the McRae’s line and the closest point of the tip of the dens is – 6 mm, in this subject. The minus before the number indicates that the selected point of the dens is below the line. By Paolo Maccallini.

10. Distance between basion and odontoid process

It is the distance between the basion and the tip of the dens. It is also called basion-dental interval (BDI) and it has been proposed that a value greater of 10 mm is abnormal and predicts occipito-atlantal instability. Moreover, the average value is 5 mm, according to (Handerson F. 2016). I have not been able to find statistical data for BDI measured in MRI sagittal sections of healthy subjects. Moreover, I do not have a cutoff for the minimum value.

11. Craniocervical instability

According to some authors, the craniocervical junction is considered to be unstable (craniocervical instability, CCI) in the case of “any anomaly that leads to neurological deficits, progressive deformity, or structural pain”. A clival canal angle below 125° and/or a Grabb’s measure above 9 mm are considered to be predictive of CCI (Joaquim A.F. et al. 2018). Craniocervical instability has been described in congenital conditions like Down syndrome (Brockmeyer D 1999), Ehlers-Danlos syndrome (Henderson F.C. et al. 2019), and Chiari malformation (Henderson FC. et al. 2010) as well as in rheumatoid arthritis (Henderson F.C. et al. 1993).

In one study on craniocervical junction stabilization by surgery in five patients with Chiari I malformation or basal invagination (Henderson FC. et al. 2010), inclusion criteria, beside abnormal Grabb’s measure and CXA, were:

  • signs of cervical myelopathy (sensorimotor findings, hyper-riflexia);
  • signs of pathology at the level of the brainstem, collected in this table;
  • severe head and/or neck pain, improved by the use of a neck brace for at least a 2 weeks period.

The same inclusion criteria were adopted in another similar study on patients with hereditary hypermobile connective tissue disorders (Henderson F.C. et al. 2019).

Several mechanisms are believed to play a role in the genesis of the clinical picture described in CCI: stretch of the lower cranial nerves (vagus nerve is among them) and of the vertebral arteries; deformation of the brainstem and of the upper spinal cord (Handerson F. 2016).

12. Craniocervical instability and ME/CFS

CCI has been described in Ehlers-Danlos syndrome hypermobile type (Henderson F.C. et al. 2019), although the prevalence of CCI in EDSh has not been established, yet (to my knowledge). At the same time, an overlapping between EDSh and ME/CFS has been reported in some studies: most of EDSh patients met the Fukuda Criteria, according to (Castori M. et al. 2011) and it has been proposed that among patients with ME/CFS and orthostatic intolerance, a subset also has EDS (Rowe P.C. et al. 1999), (Hakim A. et al. 2017). So, it might seem not unreasonable to find CCI in a subgroup of ME/CFS patients.

Moreover, both in CCI and in ME/CFS there is an involvement of the brainstem. Briefly, hypoperfusion (Costa D.c: et al. 1995), hypometabolism (Tirelli U. et al. 1998), reduced volume (Barnden L.R. et al. 2011), microglial activation (Nakatomi Y et al. 2014), and loss of connectivity (Barnden L.R. et al. 2018) have been reported in the brainstem of ME/CFS patients. Basal ganglia dysfunction has also been documented in ME/CFS (Miller AH et al. 2014), and this could be an indirect measure of midbrain abnormal functioning, given the connection between substantia nigra (midbrain) and basal ganglia, via the nigrostriatal tract. It is worth mentioning here that vagus nerve infection has been proposed as a feasible cause of ME/CFS (VanElzakker MB 2013) and vagus nerve (the tenth cranial nerve) has its origin in the lower part of the brainstem. Recently, brainstem pathology in ME/CFS (midbrain serotoninergic neurons alteration, in particular) has been theorized as part of a mathematical model on disrupted tryptophan metabolism (Kashi A.A. et al. 2019), (R). So, one might argue that CCI could in some cases lead to a clinical picture similar to the one described in ME/CFS because in both these conditions there is a pathology in the same anatomical district (figure 8).

Figure 8. In this model, it is assumed that CCI may produce a clinical picture similar to ME/CFS because in both the conditions there is a pathology of the brainstem. By Paolo Maccallini.

We know that in most of the cases ME/CFS starts after an infection (Chu L. et al. 2019). That said, how could CCI be linked to this kind of onset? The presence of CCI in rheumatoid arthritis (Henderson F.C. et al. 1993) might be a clue for a causal role of the immune system in this kind of hypermobility. In fact, a link between hypermobility and the immune system has been found also in a condition that is due to the duplication/triplication of the gene that encodes for tryptase (a proteolytic enzyme of mast cells) (Lyons JJ et al. 2016).

A piece of evidence against a link between CCI and ME/CFS is perhaps represented by the results of a study on EDSh patients with CCI who underwent surgery for their craniocervical junction abnormalities. Before surgery, all the 20 patients reported fatigue among their symptoms and two years after surgery the improvement in this symptom was not statistically significant, despite improvement in the craniocervical joint measures (CXA and Grabb’s measure) and improvement in overall functioning (Henderson F.C. et al. 2019). This seems to be a clue against the role of CCI in fatigue, at least in this patient population.

13. Craniocervical measures in a few ME/CFS patients

I have collected standard MRIs of the head of seven ME/CFS patients and I have performed the measures described in this article, using the sagittal section of T1 weighted series. Data are collected in table 1.

GM stands for Grabb’s measure and the cutoff for this value has been taken from an MRI study on children with Chiari malformation (Grabb P.A. et al. 1999). I have not been able to find a study on adult normal subjects, so I don’t have any reliable statistical data on that measure. Yet, the reported cutoff of 9 mm is what is commonly indicated for GM (R), (Handerson F. 2016), (Joaquim A.F. et al. 2018). HHM stands for horizontal Harris measure and the cutoff was deduced from (Henderson F.C. et al. 2019), but again, I have not found statistical data on this measure from MRIs sagittal sections of an adult healthy population. BDI is the basion-dens interval and the cutoff comes from (Handerson F. 2016) and no statistical data available on a suitable population. CDD and MDD are the distances of the tip of the dens from the Chamberlain’s line and the McRae’s line, respectively and I got the statistical data from an MRI study on adult healthy subjects (Cronin C.G. et al. 2007). CXA is the clival-canal angle: statistical data were from an MRI study on 33 healthy adults (Botelho R.V. et al. 2013), while the cutoff was indicated in (Henderson F.C. et al. 2019).

The only abnormal values found are the distance between the tip of the dens and both Chamberlain’s line and McRae’s line in P2 and the Grabb’s measure in P7, with the caveat that I don’t have suitable statistical data for comparison, in the latter case. And of course, I don’t know what the meaning of these slightly abnormal values is. Of notice, none of these patients would fit the criteria proposed in (Henderson F.C. et al. 2019) for surgery of the craniocervical junction.

Table 1. GM: Grabb’s measure; HHM: horizontal Harris measure; BDI: basion-dens interval; CDD: distance between dens and Chamberlain’s line; MDD: distance between dens and McRae’s line; CXA: clival-canal angle; POTS: postural orthostatic tachycardia syndrome; PEM: post-exertional malaise; μ: mean value; σ: standard deviation. By Paolo Maccallini.

Patient 4 should probably be excluded from this table: she had a documented B12 deficiency at the onset of her disease; she was treated with vitamin B12 injections. After some months she has substantially improved. So it might have been a case of vitamin B12 deficiency. She also has a problem with iron, which tends to be low and has to be supplemented; since vitamin B12 and iron are both absorbed in the small intestine, this patient may have some pathology in that area. In fact, signs of inflammation were found in a sample of her duodenum, but it was not possible to define a specific diagnosis (celiac disease was ruled out, as well as Crohn’s disease).  Interesting enough, this patient had a diagnosis of POTS (by tilt table test) and vitamin B12 deficiency has been linked to POTS (Öner T. et al. 2014). As mentioned, she is in remission now.

Let’s try now a statistical analysis for the values of the clival canal angle reported in Table 1, using as control group the one published in (Botelho R.V. et al. 2013). We can use Cantelli’s inequality (see Eq. 2, paragraph 15) and extend it to a random vector. We get for the p value:

Cantelli.JPGIn our case m = 8, µ = 148, σ = 9.88. By using the following very simple code we calculate a p value < 0.03, which is statistically significant.  The problem here is that the measure of the CXA in the control group has been made by someone else than me, so this might be a source of error. Moreover, the sample is very small. All that said, a tendency towards a reduction of the clival canal angle among ME/CFS patients might be further proof of increased mobility of the cranio-cervical joint in this patient population, in agreement with previous studies on other joints (Rowe P.C. et al. 1999), (Hakim A. et al. 2017).

clear all
mu = 148
ds = 9.88
m = 8
p = 1.;
x = [142, 146, 142, 142, 135, 140, 140, 139];
for i=1:m
  p = p*( 1/( 1 + ( ( (mu-x(i))/ds )^2 ) ) );

14. Craniocervical instability and Euler’s angles

A more sound definition of CCI might perhaps be obtained with the introduction of the angles that are used to describe the orientation of a rigid body with respect to a fixed coordinate system. To simplify our analysis, we assume here that atlas (C1) and axis (C2) are fixed one to the other. Then, consider the coordinate system (O; x, y, z) in figure 1 to be fixed to C1-C2 and then let’s introduce a second coordinate system (Ω; ξ, η, ζ), fixed to the skull. The orientation of (Ω; ξ, η, ζ) with respect to (O; x, y, z) is given by the angles ψ, φ, θ, called Euler’s angle (figure 7). The angle θ is the one between z and ζ. In order to define the other two angles, we have to introduce the N axis, known as line of nodes, which is the intersection between plane xy and plane ξη. That said, ψ is the angle between x and N, while φ is the angle between ξ and N.

coordinate systems.JPG
Figure 7. The orientation of  (Ω; ξ, η, ζ) with respect to (O; x, y, z) is univocally determined by the angles ψ, φ, θ. N is the line of nodes, defined as the intersection between plane xy and plane ξη. By Paolo Maccallini.

All that said, craniocervical hypermobility may be defined as follows.

Def. We have CCI when there is an increase in the physiological range of Euler’s angles and/or when |ΩO|≠0.

In this definition, we have assumed that in physiological conditions the length of the vector ΩO is nought. The length of ΩO is indicated as |ΩO|. The condition |ΩO|≠0 means that at least one of the components of ΩO along the axises x, y, z is different from zero

The reader can easily recognize now that:

  • the clival-canal angle is a measure of instability in the angle θ; we can also say that clival-canal angle measures instability around N;
  • Grabb’s measure and Horizontal Harris measure both indicate instability along the x-axis; they are a measure of the x component of vector ΩO;
  • Chamberlain’s line gives a measure of instability along the z-axis; the same applies to McRae’s line and to BDI.

15. Cantelli’s inequality

To assess the statistical significance of the experimental data in Table 1 we have used Cantelli’s inequality, also known as one-tailed Chebyshev’s inequality. Given the random variable X whose distribution has mean E[X] and variance Var[X], then Cantelli’s inequality states that:


for any η>0. The importance of these two inequalities is that they are true whatever the distribution is. In the case of our patient’s MRS data, we only knew mean values and standard deviations (which is the square root of variance) of the distributions of the metabolic values of the control group. So one way to assess significance was to use this inequality (the other way would be to use the less precise Chebyshev’s inequality). To prove Eq. 1 and Eq. 2 we have first to prove Markov’s inequality, which states that

Eq 3

for any a>0. In order to prove that, consider that for the probability on the left of the inequality we can write

Eq a.JPG

At the same time, the expectation (or mean) of the distribution can be written

Eq b.JPG

Thus we haveEq c.JPG

and Markov’s inequality is proved. Let’s now come back to the proof of Cantelli’s inequality. If we consider the random variable Y = X – E[X] we have that P(Y≥η) = P(Y+t≥η+t) and assuming that η+t > 0 we have

Eq d.JPG

That said, Markov’s inequality gives

Eq e.JPG

For the expectation on the right we have

Eq f.JPG

and knowing that E[Y²] = Var[X] and that E[Y] = 0, we can write

Eq 4.JPG

The function on the right of the inequality is represented in Figure 4. It is easy to recognize that it assumes its lower value for t = Var(X)/η and this proves Eq. 1. The other inequality (Eq. 2) can be proved in the same way, considering the random variable Z = E[X] – X.

Figure 8. This is the qualitative plot of the function in the second term of the inequality in Eq. 4. In this diagram, we have written the variance through the standard deviation σ. Remember that σ² = Var[X].



Un modello matematico per la ME/CFS

Un modello matematico per la ME/CFS

La versione in inglese di questo articolo è disponibile qui.


Molti dei miei lettori sono probabilmente a conoscenza dei tentativi attualmente fatti per simulare matematicamente il metabolismo energetico dei pazienti ME/CFS, integrando i dati metabolici con i dati genetici. In particolare, il dr. Robert Phair ha sviluppato un modello matematico delle principali vie metaboliche coinvolte nella conversione dell’energia, dall’energia immagazzinata nei legami chimici di grandi molecole come glucosio, acidi grassi e amminoacidi, all’energia immagazzinata nell’adenosina trifosfato (ATP), pronta per l’uso. Phair, che è un ingegnere, ha determinato le equazioni differenziali che regolano questa enorme quantità di reazioni chimiche e le ha adattate al profilo genetico trovato nei pazienti ME/CFS. Ma già alcuni anni fa due fisici pubblicarono un interessante modello matematico del metabolismo energetico durante e dopo l’esercizio, nei pazienti ME/CFS (Lengert N. et Drossel B. 2015). In quanto segue descriverò questo modello e le sue previsioni e vedremo da vicino queste equazioni differenziali.

Le vie metaboliche che sono state analizzate

Il modello di Lengert e Drossel estende due sistemi di equazioni differenziali precedentemente pubblicati che descrivono il comportamento della glicolisi, del ciclo di Krebs (enormemente semplificato come una singola reazione!), della catena di trasporto degli elettroni mitocondriale (descritta in dettaglio), del sistema della creatina chinasi e della conversione di adenosina difosfato (ADP) in ATP, nei muscoli scheletrici (Korzeniewski B. et Zoladz JA. 2001), (Korzeniewski B. et Liguzinski P. 2004). Gli autori hanno aggiunto equazioni per l’accumulo di lattato e il suo efflusso fuori dalla cellula, per la sintesi de novo di inosina monofosfato (IMP) durante il recupero, per la degradazione dell’adenosina monofosfato (AMP) in IMP, per la degradazione di IMP in inosina e ipoxantina. Tutte le vie coinvolte sono raccolte nella figura 1. Queste reazioni sono descritte da 15 equazioni differenziali e la soluzione è un insieme di 15 funzioni del tempo che rappresentano la concentrazione dei principali metaboliti coinvolti (come il lattato, il piruvato, l’ATP, ecc.). Diamo ora uno sguardo più da vicino a una di queste equazioni e alla struttura generale dell’intero sistema di equazioni.

Figura 1. Questa è una rappresentazione schematica dei percorsi metabolici descritti dal modello matematico sviluppato da Lengert e Drossel. In dettaglio: sintesi citosolica e degradazione di ADP, AMP e IMP (a sinistra), via della protein chinasi e glicolisi (centro), catena di trasporto degli elettroni e ciclo TCA (a destra). Da Lengert N. et Drossel B. 2015.

lactate dehydrogenase.PNG
Figure 2. La lattato deidrogenasi è l’enzima coinvolto nella catalisi della conversione del lattato in piruvato. Questa reazione procede in entrambe le direzioni.

Equazioni differenziali per reazioni chimiche

Consideriamo l’equazione utilizzata dagli autori per la reazione catalizzata dalla lattato deidrogenasi (la trasformazione del piruvato in lattato, figura 2) dove si è anche tenuto conto dell’efflusso di lattato dal citosol. L’equazione differenziale è la seguente:


dove i tre parametri sono determinati sperimentalmente e i loro valori sono


Il primo descrive l’attività dell’enzima lattato deidrogenasi: più questo parametro è elevato, più l’enzima è attivo. Il secondo descrive la reazione inversa (dal lattato al piruvato). Il terzo è una misura di quanto lattato la cellula è in grado di trasportare al di fuori della sua membrana. Forse il lettore si è reso conto che l’equazione del lattato è una equazione differenziale ordinaria del primo ordine. Si dice “primo ordine” perché nell’equazione compare solo la derivata prima della funzione che dobbiamo determinare (lattato, in questo caso); “ordinario” si riferisce al fatto che il lattato è funzione di una sola variabile (il tempo, in questo caso). Si vede immediatamente che un’equazione come questa può essere scritta come segue:

equation bis.PNG

Supponiamo ora di avere altre due equazioni differenziali di questo tipo, una per il piruvato e una per i protoni (le altre due funzioni del tempo che sono presenti nell’equazione):


Allora avremmo un sistema di tre equazioni differenziali ordinarie come questo:System.PNG

I valori iniziali delle funzioni che dobbiamo determinare sono raccolti nell’ultima riga: questi sono i valori che le funzioni incognite assumono all’inizio della simulazione (t = 0). In questo caso, questi valori sono le concentrazioni di lattato, piruvato e protoni nel citosol, a riposo. Le tre funzioni del tempo sono chiamate la soluzione del sistema. Questo tipo di sistema di equazioni è un esempio di problema di Cauchy, e sappiamo dalla teoria matematica che non solo ha una soluzione, ma che questa soluzione è unica. Inoltre, mentre questa soluzione  può non essere sempre facilmente trovata con metodi rigorosi, è abbastanza facile risolvere il problema con metodi approssimati, come il  metodo di Runge-Kutta o il metodo di Heun. Detto questo, il sistema di equazioni differenziali ordinarie proposto da Lengert e Drossel per il metabolismo energetico è proprio come quello qui sopra, con l’eccezione che comprende 15 equazioni anziché tre. Quindi, la principale difficoltà in questo tipo di simulazione non è l’aspetto computazionale, ma la determinazione dei parametri (come quelli enzimatici) e dei valori iniziali, che devono essere raccolti dalla letteratura medica o devono essere determinati sperimentalmente, se non sono già disponibili. L’altro problema è come progettare le equazioni: esistono spesso diversi modi per costruire un modello matematico di una reazione chimica o di qualsiasi altro processo biologico.

Il modello matematico della ME/CFS

Come adattiamo ai pazienti ME/CFS un modello del metabolismo energetico che è stato impostato con parametri presi da esperimenti condotti su soggetti sani? Questa è un’ottima domanda, e abbiamo visto che Robert Phair ha dovuto usare i dati genetici dei pazienti ME/CFS relativi agli enzimi chiave del metabolismo energetico, al fine di impostare il suo modello. Ma questi dati non erano disponibili quando Lengert e Drossel hanno progettato le loro equazioni. E allora? I due fisici hanno cercato studi sulla fosforilazione ossidativa nei pazienti ME/CFS e hanno scoperto che qusto processo cellulare era stato misurato con diverse impostazioni sperimentali e da diversi gruppi e che il denominatore comune di tuti gli studi era una riduzione di funzione che andava da circa il 35% (Myhill S et al. 2009), (Booth, N et al 2012), (Argov Z. et al. 1997), (Lane RJ. et al. 1998) a circa il 20% (McCully KK. et al. 1996), (McCully KK. et al. 1999). Quindi l’idea degli autori è stata di moltiplicare i parametro enzimatici di ciascuna reazione appartenente alla fosforilazione ossidativa per un numero compreso tra 0,6 (grave ME / CFS) a 1,0 (persona sana). In particolare, i due fisici hanno scelto un valore di 0,7 per la ME/CFS, nei loro esperimenti in silico (cioè esperimenti virtuali condotti nel processore di un computer).

Previsioni del modello matematico

Il modello matematico è stato utilizzato per eseguire prove di esercizio in silico con varie lunghezze e intensità. Quello che Lengert e Drossel hanno trovato è stato che il tempo di recupero nel paziente ME/CFS medio era sempre maggiore se confrontato con quelli di una persona sana. Il tempo di recupero è definito come il tempo necessario affinché una cellula ripristini il suo contenuto di ATP (97% del livello in stato di riposo) dopo lo sforzo. Nella figura 3 si vedono i risultati della simulazione per un esercizio molto breve (30 secondi) e molto intenso. Come potete vedere, nel caso di una cellula sana (a sinistra) il tempo di recupero è di circa 600 minuti (10 ore) mentre una cellula di una persona con ME/CFS (a destra) richiede più di 1500 minuti ( 25 ore) per recuperare.

half minute 1.png
Figura 3. Risultati della simulazione per un esercizio con una durata di 30 secondi e un’intensità elevata (consumo iniziale di ATP 300 volte il valore di riposo). A sinistra, il caso di una cellula muscolare scheletrica sana, a destra il caso di una cellula di una persona con ME/CFS le cui reazioni mitocondriali hanno una velocità ridotta al 70% della velocità del controllo sano. I grafici li ho ottenuti utilizzando la versione online del software, disponibile qui.

Un altro risultato interessante della simulazione è un aumento di AMP nei pazienti rispetto al controllo (figura 3, linea arancione). Ciò è dovuto all’uso compensativo delle due vie metaboliche in figura 4: la reazione catalizzata dall’adenilato chinasi, in cui due molecole di ADP sono utilizzate per produrre una molecola di ATP e una molecola di AMP; e la reazione catalizzata dalla deaminasi AMP, che degrada AMP in IMP (che viene quindi convertito in inosina e ipoxantina). Queste due reazioni sono utilizzate dai pazienti ME/CFS più che dal controllo sano, al fine di aumentare la produzione di ATP al di fuori dei mitocondri.

Figura 4. La via metabolica a sinistra è utilizzata dai pazienti ME/CFS più che nel controllo per aumentare la produzione di ATP al di fuori dei mitocondri, secondo questo modello matematico. Il percorso sulla destra degrada l’AMP in IMP.

Se diamo un’occhiata più da vicino alle concentrazioni di AMP e IMP nelle 4 ore successive allo sforzo (figura 5), vediamo effettivamente una maggiore produzione di IMP (linea verde) e AMP (linea arancione) nei muscoli scheletrici dei pazienti (destra) rispetto ai controlli (sinistra).

half minute 3.png
Figura 5. Lo stesso della figura 3, ma ingrandito per dare uno sguardo più da vicino alle concentrazioni durante le 4 ore successive allo sforzo. La cellula sana è a sinistra, mentre le cellule di una persona con ME/CFS sono sulla destra.

Un’ulteriore via di compensazione utilizzata dai pazienti (secondo questo modello) è la produzione di ATP da ADP da parte dell’enzima creatina chinasi (figura 6). Questo è un altro modo che abbiamo per produrre ATP nel citosol senza l’aiuto dei mitocondri. In questo modello di ME/CFS, vi è un aumento nell’uso di questo percorso, che porta a una diminuzione della concentrazione cellulare di fosfocreatina e un aumento della concentrazione cellulare di creatina (figura 7).

creatine kinase
Figura 6. La reazione catalizzata dalla creatina chinasi: una molecola di ADP viene convertita in ATP grazie al gruppo fosfato trasportato dalla fosfocreatina.

half minute 4.png
Figura 7. La concentrazione di fosfocreatina nel citosol delle cellule muscolari scheletriche è inferiore nella ME/CFS (a destra) rispetto al controllo (a sinistra) durante e dopo l’esercizio. Ciò è dovuto al maggiore uso di questa molecola per produrre ATP in modo anaerobico nel metabolismo ME/CFS rispetto al controllo. I parametri per questa simulazione sono gli stessi descritti nella figura 3.

Parvovirus B19 e Sindrome da Fatica Cronica

Parvovirus B19 e Sindrome da Fatica Cronica

La versione in inglese di questo articolo è disponibile qui.


Il parvovirus B19 è un virus a singolo filamento di DNA con un tropismo per i precursori degli eritrociti di Homo sapiens. Fu scoperto nel 1975 (Cossart YE et al. 1975) ma fu classificato come patologico per gli esseri umani solo nel 1981 (Pattison JR. et al. 1981). Il suo genoma consiste in un DNA lineare a filamento singolo con una lunghezza di 5,600 basi che include i geni per le due proteine ​​del capside VP1 e VP2 e per la proteina non strutturale NP1 (Trösemeier JH. et al. 2014). La sua classificazione linneana è quella riportata nella tabella sottostante. Il parvovirus B19 ha un diametro di soli 25 nm, e a questo deve il suo nome: parvum è un aggettivo latino che significa piccolo. Nei bambini, l’infezione acuta è associata a erythema infectiosum (noto anche come quinta malattia). Negli adulti immunocompetenti può causare poliartrite simmetrica acuta, mentre nell’ospite immunodepresso l’infezione persistente da B19 si manifesta come aplasia eritroide pura e anemia cronica (Heegaard ED et Brown KE 2002). Il parvovirus B19 si diffonde attraverso le secrezioni respiratorie, come la saliva, l’espettorato o il muco nasale, quando una persona infetta tossisce o starnutisce [R]. Il virus può persistere nei globuli bianchi (Saal JG. et al. 1992).

Family: Parvoviridae
Subfamily: Parvovirinae
Genus: Erythroparvovirus
Species: Primate erythroparvovirus 1

Parvovirus B19 e sindrome da fatica cronica

Una forma di affaticamento cronico è stata descritta sia durante l’infezione acuta da parvovirus che durante la convalescenza (Kerr JR et al. 2001) ed è risultata associata a livelli elevati di TNF-α e INF-γ. Uno studio ha seguito 39 pazienti con infezione da Parvovirus B19 acuta per una media di due anni e ha riferito che 5  di loro (13%) hanno sviluppato la CFS. La maggior parte di loro aveva una PCR positiva e/o IgG positive nel sangue per B19. Il deterioramento nella memoria e nella concentrazione, il malessere post-sforzo e la mialgia erano presenti in tutti e cinque i soggetti. La prevalenza di IgG anti-VP1/2 era pressappoco la stessa nei pazienti e nei controlli, mentre le IgG anti-NS1 e il DNA nel siero erano più prevalenti nei pazienti che nei controlli (Kerr JR. et al. 2002). Nel 2009 Frémont e colleghi hanno cercato il DNA virale nelle biopsie intestinali (sia dell’antro gastrico che del duodeno) e hanno riscontrato una maggiore prevalenza di risultati positivi nei pazienti rispetto ai controlli. Eppure, i pazienti con PCR positiva per il DNA di Parvovirus B19 nelle biopsie avevano una PCR negativa nel sangue (Frémont M. et al. 2009). Un altro studio ha riscontrato una maggiore prevalenza di IgG anti-NS1 nei pazienti rispetto ai controlli, mentre il DNA del siero, l’IgG anti-VP1/2, l’IgM anti-VP1, l’IgM anti-NS1 non differivano tra pazienti e controlli. Gli anticorpi anti-NS1 erano associati a artralgia, tra i pazienti (Kerr JR. et al. 2010). Recentemente, un altro gruppo ha confermato una normale prevalenza di IgG anti-VP1/2 nei pazienti CFS, ma un contestuale un aumento di IgM anti-VP 1 e DNA sierico nei pazienti rispetto ai controlli (Rasa S. et al. 2016). Questi dati sono riassunti nella tabella sottostante.

Tipologia di test
Controlli sani
valore p
IgM o DNA 3/200 Chia JK. et Chia A. 2003
DNA in biopsie¹ 19/48 (40%) 5/35 (14%) 0.008 Frémont M. et al. 2009
DNA nel siero 3/5 (60%) 0/50 Kerr JR. et al. 2002
11/200 (5,5%) 0/200 NS Kerr JR. et al. 2010
34/200 (17%) 2/104 (1.9%) <0.0001 Rasa S. et al. 2016
0/32 Frémont M. et al. 2009
WBC DNA 1/5 (20%) 0/50 Kerr JR. et al. 2002
Anti-VP 1 IgM 4/200 0/200 NS Kerr JR. et al. 2010
16/200 (8%) 0/89 0.0038 Rasa S. et al. 2016
Anti-NS1 IgM 3/200 1/200 NS Kerr JR. et al. 2010
Anti-VP 1/2 IgG 4/5 (80%) 37/50 (74%) Kerr JR. et al. 2002
150/200 (75%) 156/200 (78%) NS Kerr JR. et al. 2010
140/200 (70%) 60/89 (67.4%) NS Rasa S. et al. 2016²
Anti-NS1 IgG 2/5 (40%) 8/50 (16%) Kerr JR. et al. 2002
83/200 (41.5%) 14/200 (7%) <0.0001 Kerr JR. et al. 2010

1: biopsie dell’antro gastrico e del duodeno. 2: il kit usato è questo. WBC, white blood cells.

In letteratura sono descritti almeno quattro casi di pazienti ME/CFS con infezione B19  attiva (DNA positivo nel sangue) trattati con successo con immunoglobuline per via endovenosa, con rapida risoluzione dei sintomi e eliminazione dell’infezione. In tre casi il trattamento è stato il seguente: 400 mg/kg/giorno per cinque giorni (Kerr JR. et al. 2003). Nel paziente rimanente la posologia non viene riportata (Jacobson SK. et al. 1997).


L’infezione acuta da Parvovirus può evolvere in ME/CFS in più del 10% dei casi (Kerr JR et al. 2001), (Kerr JR. et al. 2002). Questa prevalenza è in accordo con la percentuale di coloro che sviluppano ME/CFS dopo infezioni sintomatiche da Giardia duodenalis (Mørch K et al. 2013), virus Epstein-Barr, Coxiella burnetii e Ross River virus (Hickie I. et al. 2006) (vedi anche questo post). Ciò suggerirebbe che diversi patogeni possono innescare un percorso comune che alla fine porta alla ME/CFS. Eppure, i marcatori di infezione attiva da Parvovirus B19 sono più comuni tra i pazienti ME/CFS rispetto ai controlli sani: questo è il caso del DNA virale nella mucosa gastrica (Frémont M. et al. 2009) e nel siero (Rasa S. et al. 2016) e delle IgM anti-VP 1 (Rasa S. et al. 2016). Inoltre, la sintesi di IgG specifiche per NS1 è significativamente più prevalente nei pazienti rispetto ai controlli, e questo tipo di anticorpi è stato documentato essere più frequente in caso di decorso più grave e persistente dell’infezione da B19 (von Poblotzki A. et al. 1995). Quattro casi di ME/CFS con infezione attiva da B19 sono stati trattati con successo con IVIG (Jacobson SK. et al. 1997), (Kerr JR. et al. 2003). Allo stesso tempo, la sieroprevalenza di B19 rispetto alle IgG contro le proteine VP 1/2 è la stessa nei pazienti e nei controlli (Kerr JR. et al. 2002), (Kerr JR. et al. 2010), (Rasa S. et al. 2016), il che significa che il numero di individui che contraggono il virus nella loro vita è lo stesso nei pazienti e nei controlli.


La sieroprevalenza del parvovirus B19 è la stessa nei pazienti ME/CFS e nei controlli, ma l’infezione attiva è più prevalente nei casi rispetto ai controlli. Inoltre, i pazienti hanno maggiori probabilità di avere anticorpi contro la proteina NS1, un marcatore di decorso persistente dell’infezione da B19. Le immunoglobuline in vena potrebbero essere un’opzione terapeutica nei pazienti ME/CFS con infezione attiva da B19.


Mark Davis e il test immunitario universale

Mark Davis e il test immunitario universale

1. Introduzione

Queste sono solo alcune note raccolte dal discorso che Mark Davis ha pronunciato in occasione del Community Symposium tenutosi nell’agosto scorso (2017) a Stanford (video). Nei paragrafi 2, 3, 4 e 5 introdurrò alcune nozioni di base sui recettori delle cellule T (T cell receptors: TCR); il paragrafo 6, attraverso riferimenti  al video già menzionato e a tre articoli pubblicati da Davis et al. nel corso degli ultimi quattro anni, descrive una  nuova tecnologica sviluppata da Mark Davis e colleghi. Questi cenni preliminari dovrebbero auspicabilmente fornire i mezzi per comprendere a pieno la portata dei dati pilota presentati da Mark Davis a proposito dell’attività delle cellule T nella ME/CFS (paragrafo 7) e nella malattia di Lyme cronica (paragrafo 8), mostrando perché tale tecnologia prometta di divenire una sorta di test universale per qualsiasi tipo di infezione o patologia autoimmune, nota o sconosciuta.

2. Cellule T

I linfociti T sono una tipologia di leucociti (o globuli bianchi), vale a dire la componente cellulare del nostro sistema immunitario. La gran parte dei linfociti T in circolo è rappresentata da linfociti T helper (T helper cells: Th cells)  e da linfociti T citotossici (cytotoxic T lymphocytes: CTL). Mentre la funzione dei linfociti T helper è quella di regolare l’attività degli altri leucociti attraverso la produzione di un’ampia gamma di trasmettitori chimici (le citochine, cytokines), le CTL sono coinvolte direttamente nella soppressione delle cellule ospiti infette. I linfociti T appartengono al ramo cosiddetto adattivo del sistema immunitario, assieme alle cellule B (le fabbriche di anticorpi), e, in quanto tali, il loro compito è quello di garantire una difesa specifica, su misura, contro gli agenti patogeni: per contrastare uno specifico agente patogeno, il nostro sistema immunitario può schierare in campo non solo anticorpi specifici ma anche specifici linfociti T (Th cells e CTL). Il ramo innato del sistema immunitario, invece, (nel quale rientrano le cellule natural killer, i macrofagi, le cellule dendritiche, i mastociti…) è in grado di fornire soltanto una difesa aspecifica, una prima linea di risposta immunitaria.

3. Recettori dei linfociti T

I linfociti T sono in grado di andare alla ricerca di specifici patogeni grazie a una molecola espressa sopra la propria superficie, chiamata recettore del linfocita T (TCR). Nella figura 1 si può vedere una schematica rappresentazione del TCR e del meccanismo in virtù del quale il linfocita T riconosce il proprio target. Gli antigenti (proteine) degli agenti patogeni vengono indicati ai linfociti T da altre cellule del nostro corpo: vengono esposte sopra molecole chiamate Complesso Maggiore di Istocompatibilità (MHC), che si trova espresso sulla membrana esterna. Se un dato antigene mostra compatibilità con il TCR di uno specifico linfocita T, tale linfocita T si attiva e comincia a proliferare (espansione clonale, clonal expansion). Le due catene principali (α and β) sono assemblate combinando la trascrizione di segmenti di gene, ognuno dei quali ha copie multiple, leggermente diverse fra loro: in altre parole, i TCR vengono assemblati a partire da peptidi scelti a caso da un insieme di diverse alternative possibili. Questo comporta un repertorio di 10^15 diversi possibili TCR  (Mason DA 1998). Ogni linfocita T mostra un solo tipo di TCR.


4. Cellule T helper 

Le cellule T helper sono programmate per riconoscere esclusivamente antigeni esposti dalle molecole MHC di seconda classe (II): questa classe di MHC viene espressa sulla membrana esterna di alcuni leucociti, principalmente le cellule dendritiche, le cellule B e i macrofagi (tutte assieme dette “cellule che presentano l’antigene”, antigen presenting cells: APC). Le molecole MHC II legano il TCR delle cellule T helper grazie al peptide CD4 (espresso unicamente dalle cellule T helper). L’antigene presentato dalle molecole MHC è un peptide lungo 13-17 amminoacidi (Rudensky, et al., 1991) (figura 2).


5. Linfociti T citotossici 

I TCR espressi dai linfociti T citotossici (CTL) possono legare solo antigeni esposti dalle molecole MHC di prima classe (I), che si trovano nella membrana esterna di qualunque cellula del nostro corpo. La glicoproteina CD8 è la molecola che rende i TCR espressi dalle CTL specifici per il MHC I. Mentre gli antigeni esposti dalle APC appartengono a patogeni raccolti sul campo di battaglia di passate infezioni, i peptidi esposti dal MHC I di una specifica cellula appartengono a patogeni che hanno fatto ingresso nella cellula stessa, e pertanto costituiscono la prova di un’infezione intracellulare ancora in atto (figura 3). Nel momento in cui un CTL riconosce un antigene che combacia con il proprio TCR, il CTL iduce l’apoptosi (morte programmata) della cellula che mostra l’antigene. Gli antigeni esposti dal MHC I sono peptidi che vanno dagli 8 ai 10 amminoacidi (Stern, et al., 1994).MHC I.JPG

Figure 3. Una cellula infetta espone un antigene virale sul proprio MHC I. Il TCR di un CTL si lega a questo peptide ed invia un segnale interno diretto al suo proprio nucleo, il quale risponde attivando l’apoptosi (attraverso il rilascio di granzimi, ad esempio) della cellula infetta (disegno di Paolo Maccallini).6. Il test immunologico universale

Nel corso del suo discorso, Mark Davis illustra alcuni concetti base sul sistema immunitario, prima di passare a introdurre i nuovi, entusiasmanti dati riguardo alla ME/CFS e alla Lyme cronica (o post-treatment Lyme disease syndrome: PTLDS). Contestualmente, però, dedica alcuni minuti alla descrizione di un complesso nuovo test che teoricamente renderebbe possibile estrapolare tutte le informazioni contenute nel repertorio di TCR presenti – in un dato momento – nel sangue di un essere umano. Un test del genere – che chiamerei “test immunologico universale” – avrebbe la capacità di determinare se un paziente presenta un’infezione in corso (e, nel caso, indicare il patogeno coinvolto) oppure una malattia autoimmune (anche qui specificando la natura dell’autoantigene, ossia il tessuto attaccato dal sistema immunitario). A quanto mi è dato di comprendere, il test richiede tre passaggi, che elenco nelle sezioni seguenti.

6.1. Primo step: sequenziamento del TCR

Come già spiegato nel paragrafo 3, quando un linfocita T incontra un peptide a cui è compatibile, comincia a proliferare; pertanto, nel sangue di un paziente con infezione in corso (o con reazione contro il proprio organismo, cioè con reazione autoimmune) è possibile trovare molteplici copie di linfociti T che esprimono il medesimo TCR: a differenza dei controlli sani, nei quali circa il 10% delle CD8 totali è rappresentato da copie di pochi diverse linfociti T (figura 4, prima linea), nei pazienti affetti da Lyme incipiente –  un esempio di infezione attiva – o sclerosi multipla (MS) –  un esempio di malattia autoimmune – abbiamo una massiccia clonazione di alcune linee di CTL (figura 5, seconda e terza riga, rispettivamente). Il primo step del test immunologico universale starà allora nell’identificazione dell’esatta sequenza di TCR espressa dai linfociti T presenti nel sangue, come si legge in Han A et al. 2014, dove troviamo descritto il sistema per sequenziare i geni delle catene α e β di un dato linfocita T. Tale approccio permette di costruire grafici come quello in figura 4 e quindi permette di determinare se il paziente presenti in atto un’attività anomala dei linfociti T oppure no. Qualora si riscontri un fenomeno di espansione clonale, è legittimo ipotizzare che stia avendo luogo o un’infezione o una condizione autoimmune di qualche sorta.

Clonal expansion CD8
Figure 4. Ogni cerchio rappresenta un paziente. Nella prima riga vediamo quattro controlli sani, che non presentano affatto espansione clonale delle cellule CD8 (come nel primo paziente da sinistra) oppure la presentano in maniera assai moderata (come indicato dalle porzioni in blu, bianco e grigio). Nella seconda riga troviamo invece quattro pazienti con malattia di Lyme attiva (fase incipiente) e possiamo ben notare come ciascuno di loro, nessuno escluso, presenti espansione clonale di solo tre diverse T cells (porzioni in rosso, blu e arancione). Nella terza riga, infine, abbiamo quattro pazienti affetti da MS, le cui cellule CD8 sono per maggior parte rappresentate da cloni di una selezione ristretta di T cells.
Fonte: slide proposte da Mark Davis durante il Community Symposium.

6.2. Secondo step: raggruppamento dei TCR 

Mark Davis e colleghi hanno realizzato un software capace di identificare i TCR che condividono il medesimo antigene, sia in un singolo individuo che trasversalmente a un gruppo. L’algoritmo è stato denominato GLIPH (grouping of lymphocyte interaction by paratope hotspots) ed ha dato prova di poter raggruppare – per fare un esempio – i recettori  dei linfociti T CD4 di 22 soggetti con infezione da M. tuberculosis latente in 16 gruppi distinti, ognuno dei quali comprende TCR provenienti da almeno tre individui (Glanville J et al. 2017). Cinque di questi gruppi sono riportati nella figura 5. L’idea sottostante è che TCR che appartengono allo stesso raggruppamento reagiscano allo stesso complesso peptide-MHC (pMHC).

Figure 5.  Cinque gruppi di TCR provenienti da 22 diversi pazienti affetti da turbercolosi latente, raggruppati grazie al GLIPH. La prima colonna da sinistra riporta l’identificativo dei TCR; la seconda l’identificativo dei pazienti. Le CDR per le catene β e α si trovano, rispettivamente, sulla terza e sulla quinta colonna. Tratto da Glanville J et al. 2017.

6.3. Terzo step: ricerca degli epitopi

Come abbiamo visto, questa nuova tecnologia consente di rilevare se sia in atto un’espansione clonale di linfociti T sequenziando i TCR dal sangue periferico. Consente inoltre di raggruppare i TCR presenti in un singolo paziente o condivisi da più pazienti. Il passaggio successivo è quello di identificare a quale/i tipo/i di antigene ognuno di questi raggruppamenti reagisca. Infatti, se potessimo identificare degli antigeni comuni in un gruppo di pazienti dai sintomi comparabili nei quali si riscontri un’espansione clonale in atto e simili TCR, saremmo messi in grado di comprendere se il loro sistema immunitario stia attaccando un patogeno (e di identificare il patogeno) o se stia piuttosto attaccando un tessuto ospite e, qualora fosse questo il caso, di identificare il tessuto. Come già detto, il numero di possibili combinazioni per il materiale genetico dei TCR è calcolato attorno ai 10^15, ma il numero dei possibili epitopi di cellule Th è circa 20^15, che corrisponde a più di 10^19. Ciò implica che i TCR debbano essere in una qualche misura cross-reattivi se vogliono essere in grado di riconoscere tutti i possibili peptidi esposti dai MHC (Mason DA 1998). Il grado di tale cross-reattività e il meccanismo attraverso il quale viene ottenuta sono stati spiegati con esattezza da Mark Davis e colleghi in un recente articolo (Birnbaum ME et al. 2014), che ci fornisce il terzo step del test immunologico universale. Lo scopo di questa fase consiste nel prendere un dato TCR e trovare il repertorio dei suoi specifici antigeni (giova ripetere che, appunto, ogni TCR reagisce a più antigeni). Per comprendere come ciò sia possibile, guardiamo a uno degli esperimenti descritti nell’articolo più sopra citato. I ricercatori si sono concentrati su due TCR ben precisi (chiamati Ob.1A12 e Ob.2F3), clonati da un paziente con MS e noti per essere capaci di riconoscere i pepetidi 85-99 (figura 6) della proteina basica della mielina (MBP) esposti dall’ HLA-DR15. Hanno poi preparato un insieme di cellule di lievito che esprimono molecole HLA-DR15, ognuna caratterizzata da un diverso peptide formato da 14 amminoacidi, con amminoacidi fissi esclusivamente alle posizioni 1 e 4, dove il peptide è ancorato al MHC (figura 6, sinistra). Quando alla coltura di cellule di lievito  che esprimono complessi pMHC vengono aggiunte copie di Ob.1A12, queste legano solo con alcune di quelle e, come è possibile vedere dalla parte destra della figura 6, per ciascuna posizione degli epitopi legati dal Ob.1A12 esiste un amminoacido con maggior tasso di probabilità: ad esempio, l’epitopo Ob.1A12 tipico presenta preferibilmente alanina (A) in posizione -4, istidina (H) in posizione -3, arginina (R) in posizione -2, e così via. Da notare che istidina (H) in posizione 2 e fenilanina (F) in posizione 3 sono amminoacidi obbligatori per un epitopo di  Ob.1A12.

Ob. 1A12
Figure 6. Sulla sinistra: il peptide 85-99 della proteina basica della mielina (myelin basic protein, MPB) è risaputo essere un epitopo per il TCR Ob.1A12. In posizione 1 e 4 possiede due residui che gli consentono di legare con la molecola MHC. In posizione -2, -1, 2, 3 3 5 troviamo invece i residui che legano con il TCR. La seconda riga rappresenta l’epitopo generico della libreria peptidica utilizzata per identificare il grado di cross-reattività tra tutti i possibili epitopi di Ob.1A12. A destra: la probabilità di ciascun amminoacido per ciascuna posizione è rappresentata da sfumature di viola. Come potete vedere, l’istidina (H) in posizione 2 e la fenilalanina (F) in posizione 3 sono amminoacidi obbligatori affinché un epitopo sia reattivo con Ob.1A12. Da (Birnbaum ME et al 2014).

La tabella sulla destra della figura 6 rappresenta, infatti, una tabella di sostituzione (substitution matrix) di dimensioni 14×20, uno strumento impiegato per scansionare il database dei peptidi in modo da trovare, tra tutti i peptidi conosciuti espressi da creature viventi, tutti i possibili epitopi specifici per Ob.1A12. Le matrici di sostituzione vengono solitamente utilizzate nel cosiddetto allineamento di peptidi (peptide alignment), una tecnica che punta all’identificazione di similitudini tra peptidi. Tali matrici sono basate su considerazioni di tipo evoluzionistico (Dayhoff, et al., 1978) o sullo studio delle regioni conservate delle proteine (Henikoff, et al., 1992). Ma la ricerca degli epitopi specifici di un dato TCR richiede (come abbiamo visto per Ob.1A12) una matrice di sostituzione costruita ad hoc per quel TCR: ogni TCR richiede la propria matrice di sostituzione, ottenuta incubando cellule T esprimenti quel TCR con una coltura di lieviti che espongono sui propri MHC una grande varietà di peptidi casuali, e analizzando poi i dati ricavati dall’esperimento. Quindi, un processo piuttosto complesso! Nel caso di Ob.1A12, questo processo ha portato a 2330 peptidi (incluso MBP), mentre la matrice di sostituzione specifica per Ob.2F3 ha trovato 4824 epitopi all’interno dell’intero database di peptidi. Questi peptidi includevano sia proteine non umane (batteriche, virali…) che peptidi umani. Per 33 di loro (26 non umani e 7 proteine umane), questo gruppo di ricercatori ha eseguito un test per verificare direttamente la previsione: 25/26 dei peptidi ambientali e 6/7 dei peptidi umani hanno indotto la proliferazione di cellule T che esprimono il TCR Ob.1A12 e/o il Ob.2F3, e questa è una prova della validità di questa analisi! Questi 33 peptidi sono riportati nella figura 7. Questo è l’ultimo passaggio del test immunitario universale, quello che dal TCR conduce agli epitopi. Come avete visto, un enorme insieme di diversi peptidi da diverse fonti reagisce con un singolo tipo di TCR; in altre parole, la cross-reattività è una proprietà intrinseca del TCR. Ciò significa anche che i test di trasformazione linfocitaria (LTT), ampiamente utilizzati in Europa per l’individuazione di infezioni da Borrelia burgdorferi e altri patogeni, comportano un rischio elevato di risultati falsi positivi e richiedono un processo di validazione sperimentale e teorica, attualmente mancante.

Crossreactive epitopes
Figura 7. Una serie di 33 peptidi che si suppongono essere epitopi specifici sia per Ob.1A12 che per Ob.2F3. Tratto da Birnbaum ME et al. 2014.

Siamo ora pronti ad apprezzare appieno i dati pilota che Mark Davis ha presentato al Symposium sull’espansione clonale delle cellule T CD8 nella ME/CFS e nella Lyme cronica.

7. “We have a hit!”

Mark Davis, insieme a Jacob Glanville e José Montoya, hanno sequenziato TCR dal sangue periferico di 50 pazienti ME/CFS e 49 controlli (primo passo del test immunitario universale, ricordate?), quindi li hanno raggruppati usando l’algoritmo GLIPH (secondo passo). Hanno trovato 28 cluster, ciascuno costituito da più di 2500 sequenze simili, e ogni cluster raccoglie sequenze multiple dallo stesso individuo e sequenze (che sono forse più importanti) da pazienti diversi (figura 8). Il cluster che ho cerchiato in rosso, ad esempio, è una raccolta di oltre 3000 TCR simili. La presenza di questi ampi cluster nei pazienti ME/CFS, rispetto ai controlli sani, rappresenta una prova indiretta di una risposta specifica delle cellule T a un trigger comune in questo gruppo di pazienti, che potrebbe essere un agente patogeno o un tessuto del corpo (o tutti e due).

Clustered TCR
Figura 8. Nella ME/CFS le sequenze di TCR ricavati da 50 pazienti formano 28 raggruppamenti che presentano più di 2500 sequenze simili – cosa che assolutamente non avviene nei controlli sani. Questo fa pensare ad una qualche risposta immunitaria ad un patogeno o ad un tessuto umano (o entrambi). Fonte: slide proposta da Mark Davis durante il Community Symposium.

Tra questi 50 pazienti ME/CFS, Davis e colleghi hanno selezionato 6 pazienti con geni HLA simili (figura 9, sinistra), 5 femmine tra loro, e hanno studiato i loro TCR più in profondità. Nella metà destra della figura 9, è possibile vedere per ciascun paziente il grado di espansione clonale delle CTL. Ricordate che nei controlli sani solo circa il 10% dei CTL è composto da cloni di alcune cellule (figura 4, prima riga), mentre qui vediamo che circa il 50% di tutti i CTL è composto da cloni. Quindi, una “marcata espansione clonale” delle cellule T CD8, come ha detto Davis.

ME subjects CD8
Figura 9. A sinistra: sono stati selezionati 6 pazienti ME/CFS con HLA simili. Sulla prima colonna da sinistra sono stati riportati gli identificativi dei pazienti; la seconda colonna ci informa sull’età di ciascuno; la terza sul genere; la quarta avvisa di eventuali esposizione a citomegalovirus; la quinta riguarda i geni del MHC I. A destra: l’analisi dell’espansione clonale delle cellule T CD8 per ognuno dei pazienti. L’espansione clonale è marcata (circa al 50%), se comparata a quella dei controlli sani (circa al 10%).

Le sequenze delle catene α e β dei TCR di tre dei sei pazienti (pazienti L4-02, L4-10 e L3-20) sono riportate in figura 10 (ho verificato che effettivamente si tratta di catene α e β di TCR umani, inserendole in BLAST).

TCR epitope
Figura 10. Catene β (prima colonna) e rispettive catene α (quinta colonna) provenienti da tre pazienti ME/CFSchains  (L4-02, L4-10, and L3-20, ultima colonna).

Quindi, abbiamo visto finora i primi due passaggi del test immunitario universale. E il terzo passo? Nel suo discorso, Mark Davis non ha presentato alcun particolare epitopo, ha solo mostrato una diapositiva con quella che probabilmente è la selezione degli epitopi dalla libreria discussa nel paragrafo 6.3 da parte di uno dei TCR riportati in figura 10. Questa selezione è riportato in figura 11, ma da quella foto non è possibile raccogliere alcuna informazione sull’identità di questi epitopi. Come probabilmente ricorderete dal paragrafo 6.3, l’analisi dei peptidi selezionati da un TCR nella libreria di peptidi  consente l’identificazione di una matrice di sostituzione che può essere utilizzata per selezionare tutti i possibili epitopi di quel TCR specifico, dal database delle proteine. Quest’ultima fase cruciale deve essere ancora eseguita, o è già stata eseguita, ma Davis non ha comunicato i risultati preliminari durante il suo discorso. Recentemente sono state messe a disposizione nuove risorse dalla Open Medicine Foundation, affinché questa ricerca promettente possa essere ulteriormente perseguita (R). Lo scopo qui, come già detto, è di trovare l’antigene che innesca questa risposta delle cellule T. Come ha detto Mark Davis, potrebbe essere un antigene di un agente patogeno specifico (forse un patogeno comune che va e viene) che suscita una risposta immunitaria anomala che finisce per colpire alcuni tessuti ospiti (microglia, per esempio), portando così attivazione immunitaria che è stata recentemente segnalata da Mark Davis stesso e altri in ME/CFS (Montoya JG et al. 2017). L’idea di un patogeno comune che innesca una risposta immunitaria patologica non è nuova in medicina, e la febbre reumatica (RF) è un esempio di una tale malattia: la RF è una malattia autoimmune che attacca il cuore, il cervello e le articolazioni ed è generalmente innescata da uno streptococco che infetta la gola (Marijon E et al. 2012). L’altra possibilità è, naturalmente, quella di un’infezione in corso di qualche tipo, che deve ancora essere rilevata. Come detto (vedi par. 6.1), l’espansione clonale delle cellule T CD8 è presente sia nelle infezioni acute (come la malattia di Lyme) che nelle malattie autoimmuni (come la SM) (figura 4), quindi dobbiamo aspettare l’identificazione dell’antigene se vogliamo capire se l’attività del CTL è contro un agente patogeno e/o contro un tessuto del nostro corpo.

peptide library
Figura 11. Nella figura possiamo osservare la selezione, che avviene in più momenti, di una serie di peptidi da parte di un particolare TCR proveniente da un paziente ME/CFS. La selezione ha luogo tra una enorme quantità di peptidi esposti dall’ HLA-A2 (MHC I) espresso da cellule di lievito. Ad ogni passaggio il numero di possibili peptidi si riduce.

8. La Lyme cronica esiste

È stato probabilmente trascurato il fatto che nel suo discorso, Mark Davis ha riportato anche dati molto interessanti sulla sindrome della malattia di Lyme post-trattamento (PTLDS, nota anche come malattia di Lyme cronica). In particolare, ha trovato un’espansione clonale marcata nelle cellule T CD8 di 4 pazienti PTLDS (circa il 40% dei CTL totali) come riportato nella figura 12: si consideri che in questo caso le fette blu rappresentano cellule T uniche, mentre tutte le altre fette rappresentano cloni! Tutto ciò che è stato detto sull’espansione clonale CD8 nella ME/CFS si applica anche in questo caso: potrebbe essere la prova di un’infezione in corso – forse la stessa B. burgdorferi, come suggerito da diversi modelli animali (Embers ME et al. 2017), (Embers ME et al. 2012), (Hodzic E et al. 2008), (Yrjänäinen H et al. 2010) –  o una coinfezione (un virus?). Oppure potrebbe essere l’espressione di una reazione autoimmune innescata dalla infezione iniziale. Questo deve ancora essere scoperto, eseguendo il test immunitario universale completo, ma ciò che è già chiaro dalla figura 12 è che la PTLDS è una condizione reale, con qualcosa di veramente anomalo nella risposta immunitaria: la Lyme cronica esiste.

Figura 12. Espansione clonale di cellule T CD8 in quattro pazienti affetti da Lyme cronica. L’espansione clonale, che indica l’attività delle cellule T contro un patogeno o un tessuto ospite, è assai marcata.

9. Conclusioni

Mark Davis e altri ricercatori hanno sviluppato un test complesso che è in grado di sequenziare i TCR dai pazienti, raggrupparli in gruppi di TCR che reagiscono agli stessi antigeni e scoprire gli antigeni che hanno attivato quella particolare risposta delle cellule T. Questo test è una sorta di test immunitario universale che è teoricamente in grado di riconoscere se una persona (o un gruppo di pazienti) presenta una risposta immunitaria contro un agente patogeno o contro uno dei loro stessi tessuti (o entrambe le cose). Questo approccio ha già fornito dati pilota su una attivazione anomala delle cellule T CD8 nei pazienti ME/CFS e nei pazienti PTLDS e, si spera, identificherà il trigger di questa risposta immunitaria nel prossimo futuro. Se la ME/CFS è causata da un’infezione attiva, da una malattia autoimmune o da entrambe le cose, il test immunologico universale potrebbe essere in grado di dircelo. Questa nuova tecnologia è per l’immunologia, ciò che il sequenziamento dell’intero genoma è per la genetica, o la metabolomica è per le malattie molecolari: non cerca un particolare agente patogeno o una particolare malattia autoimmune. No, cerca tutte le possibili infezioni e disturbi immunitari, anche quelli che devono ancora essere scoperti.

Siamo in trappola?

Siamo in trappola?

Questa è la traduzione in italiano della versione originale in inglese (disponibile qui).


In quanto segue, presenterò una teoria sviluppata da Robert Phair che potrebbe spiegare le basi molecolari della ME/CFS e aprire le porte a un test diagnostico e a trattamenti efficaci. Userò alcune diapositive dell’intervento che Phair ha tenuto durante il secondo Community Symposium, una conferenza scientifica annuale tenutasi qualche giorno fa a Stanford, sponsorizzata dalla Open Medicine Foundation. L’intervento di Phair è disponibile qui, da 6:42:50. Presenterò anche un’analogia meccanica (quello che intendo sarà chiarito nel seguito) grazie alla quale credo di poter spiegare l’ipotesi di Phair in modo molto intuitivo e immediato. Ma la prima cosa da sottolineare qui è probabilmente che questo modello potrebbe essere solo una teoria elegante che finirà per rivelarsi sbagliata. A tal proposito si tengano a mente le parole di Ronald Davis rispetto all’ipotesi di Phair: “Quello che succede di solito agli scienziati è che finiscono per confutare le loro stesse teorie. La scienza è questo: una costante delusione“.

Il triptofano ha due destini metabolici

Per comprendere il modello proposto da Robert Phair, dobbiamo prima imparare qualcosa sui percorsi metabolici coinvolti (figura 1). Il triptofano (Trp) è uno dei nove amminoacidi essenziali, il che significa che non possiamo sintetizzarlo e quindi proviene da ciò che mangiamo [Salway JG. 2004]. Il Trp viene metabolizzato in due modi alternativi: uno porta alla serotonina e alla melatonina (metà superiore della figura 2), l’altro (chiamato via della chinurenina) fornisce i precursori per la biosintesi del NAD + e fornisce anche metaboliti che inducono la soppressione immunitaria e promuovono la tolleranza immunitaria tra il microbiota commensale e l’ospite (metà inferiore della figura 1). Una revisione della letteratura è disponibile qui: [Mehraj V. et Routy JP. 2015].

Tryptophan metabolism.png
Figura 1. Il triptofano è un amminoacido essenziale con due destini principali: è coinvolto nella sintesi di serotonina e melatonina (metà superiore del grafico); è anche il substrato per la produzione di chinurenina, una molecola chiave che porta alla produzione di NAD+, molecola coinvolta nella regolazione delle cellule T e nella tolleranza immunitaria verso i batteri commensali (metà inferiore del grafico). Ci sono altri destini minori per il triptofano, non elencati qui. Grafico di Paolo Maccallini.

Il percorso metabolico della chinurenina inizia con la conversione di Trp in chinurenina, e questa reazione è regolata, negli esseri umani, da tre enzimi: indoleamina-2,3-diossigenasi presente in due isoforme, IDO-1 e IDO-2, e triptofano 2,3-diossigenasi (TDO) [Salway JG. 2004]. IDO-1 è espresso in vari tessuti [R], mentre IDO-2 è espresso solo in un sottogruppo di questi, cioè fegato, reni, cellule presentanti l’antigene, cervello e placenta [Metz R. et al. 2007], [Witkiewicz AK. et al. 2009]. TDO, d’altra parte, esercita la maggior parte della sua attività nel fegato [R].

IDO flux.png
Figura 2. Questo grafico rappresenta la velocità delle reazioni catalizzate da IDO-1 e IDO-2 (asse verticale) per diverse concentrazioni del substrato (asse orizzontale). IDO-1 è inibito ad alta concentrazione di Trp, mentre IDO-2 raggiunge una velocità limite. Dalla presentazione di Robert Phair.

Sappiamo da decenni che il tasso di degradazione del triptofano ad opera di IDO-1 diminuisce a concentrazioni più elevate di Trp [Yamamoto S. et Hayaishi O. 1967], [Sono M. et al. 1980] ed è stato ipotizzato che l’inibizione di IDO-1 ad alte concentrazioni sia dovuta al fatto che Trp lega l’enzima prima di O2 (a bassa concentrazione l’ordine di legame è invertito) [Efimov I et al. 2012]. È stato anche scoperto che IDO-2 è meno attivo di IDO-1 a basse concentrazioni di Trp e che segue una classica curva di Michaelis-Menten [Meininger D. et al. 2011]. Robert Phair ha raccolto questi dati cinetici su IDO-1 e IDO-2 in un bellissimo diagramma, presentato durante il simposio (figura 2) dove mostra come IDO-1 è più attivo di IDO-2 a bassa concentrazione di Trp, mentre l’attività di IDO-2 aumenta sostanzialmente a concentrazioni del substrato superiori a 10 μM.

Tabella 1. Cinque mutazioni missense (cioè che portano alla sostituzione di un amminoacido) del gene che codifica IDO-2, presentate da Phair durante la sua conferenza. La prima e l’ultima sono significativamente più comuni nei 20 pazienti affetti da ME/CFS rispetto alla popolazione generale. Sebbene sia possibile prevedere che tutte queste mutazioni riducono l’attività dell’enzima, i dati sperimentali sono disponibili solo per la prima e per la terza [Metz R. et al. 2007], per quanto ne so. Nelle ultime due colonne ho riportato i genotipi per me e un altro paziente ME/CFS e, come potete vedere, P1 (cioè io) ha una versione IDO-2 con un’attività residua inferiore al 10%, mentre l’altro paziente ha un enzima IDO-2 intatto. 
Le mutazioni dannose di IDO-2 sono comuni

Le mutazioni dannose di IDO-2 sono piuttosto comuni e ben il 50% di individui di discendenza europea o asiatica e il 25% di individui di origine africana potrebbero non avere alleli funzionali di IDO2. Due di queste mutazioni sono R248W, che riduce l’attività catalitica di IDO-2 a meno del 10% e Y359STOP, che è associata a nessuna attività residua [Metz R. et al. 2007]. Robert Phair ha scoperto che due di questi polimorfismi a singolo nucleotide (SNP) sono più comuni nella sua coorte di pazienti ME/CFS molto severi, rispetto alla popolazione generale (vedi tabella 1) e che, in media, i pazienti con ME/CFS grave hanno 1.7 alleli IDO-2 non completamente funzionanti.

IDO flux disease
Figura 3. Quando IDO-2 ha un’attività residua molto bassa (come accade con il comune polimorfismo R248W), allora la velocità totale della degradazione di Trp (linea verde) diminuisce a concentrazioni di substrato superiori a 10.000 μM. Dalla presentazione di Robert Phair.

Cosa accade quando IDO-2 non funziona?

Ciò che accade quando l’attività di IDO-2 è significativamente ridotta è chiaramente esemplificato da un altro dei diagrammi di Phair (figura 3): come potete vedere, per una concentrazione di Trp superiore a 10 μM c’è una riduzione della velocità totale della degradazione di Trp, a causa della mancanza di attività di IDO-2; da questo punto in poi, maggiore è la concentrazione del substrato, minore è la capacità del sistema di liberarsene. Ciò significa che se – per qualsiasi ragione – la concentrazione di Trp nel citoplasma aumenta a un livello molto alto, allora è impossibile tornare a un valore normale della concentrazione di Trp. In altre parole, una bassa attività di IDO-2 (dovuta a mutazioni dannose) accoppiata con alte concentrazioni di Trp, apre le porte a uno stato patologico. Secondo Robert Phair, questo stato stazionario è ciò che chiamiamo ME/CFS.

Una analogia meccanica

Accade spesso che fenomeni fisici diversi siano governati dalle stesse equazioni. Ad esempio, molti sistemi meccanici possono essere descritti attraverso reti elettriche, portando a una comprensione e gestione più semplice di questi sistemi. In questo caso, ho cercato un sistema meccanico che potesse essere equivalente, da un punto di vista matematico, al percorso metabolico in cui il Trp è degradato da IDO-1 e IDO-2, quando IDO-2 non funziona. Ho cercato in altre parole un sistema equivalente, che potesse essere più semplice da comprendere. Descrivo un tale modello in figura 4, in cui una palla con una massa m è sottoposta all’accelerazione gravitazionale g e a una forza F, che la spinge su per una rampa inclinata, con una forma molto precisa. In questa analogia abbiamo che il potenziale gravitazionale della palla (dato da mgy) rappresenta la concentrazione di Trp nel citoplasma, il peso W della palla moltiplicato per sinθ è la velocità della degradazione di Trp da parte di IDO-1 e IDO-2 (flusso totale di IDO), e F è l’afflusso di Trp proventiente dal sangue, nel citoplasma. Quando la palla viene messa nella regione verde del pendio, rimane nella regione verde, dal momento che il campo gravitazionale la spinge verso un’altezza inferiore; d’altra parte, se la palla viene messa nella regione arancione, la forza F la spinge ad un’altitudine maggiore, lontano dall’area verde.

mechanical analogy.png
Figura 4. Un’analogia meccanica della degradazione di Trp da IDO 1 e IDO 2, quando IDO 2 non funziona. La concentrazione di Trp è rappresentata dal potenziale gravitazionale di una palla con una massa m, il flusso totale di IDO è il peso W moltiplicato per sinθ, la forza F è l’afflusso di Trp all’interno della cellula, dal sangue. Quando la palla si trova nell’area verde (bassa concentrazione di Trp) viene tenuta lì da W; quando è nella regione arancione, è spinta verso l’alto da F. Di Paolo Maccallini.

Questo è il comportamento esatto del percorso metabolico di cui stiamo parlando, quando IDO-2 è non funzionante: se la concentrazione di Trp è inferiore a un certo livello, il sistema è in grado di mantenere stabile questa concentrazione o di ridurla (regione verde); quando la concentrazione è superiore a questo valore limite, può solo aumentare ulteriormente o rimanere stabile (regione arancione). Questa è la “ipotesi della trappola metabolica”.

Ci sono buone notizie

Se questo modello fosse vero, almeno per un sottogruppo di pazienti, sarebbe un’ottima notizia. Perché? Se si considera il sistema meccanico equivalente in figura 4 ci si rende conto in un attimo che lo stato patologico ha il potenziale di essere invertito abbastanza facilmente: bisogna solo ridurre F, ovvero l’afflusso di Trp dal sangue. Poiché il Trp proviene da ciò che mangiamo, è teoricamente possibile modulare il suo livello con un intervento dietetico. Sono possibili anche altre strade; infatti, il sistema può tornare alla normalità aumentando il valore di θ, che rappresenta l’attività di IDO nella nostra analogia, e l’attività di IDO è fortemente indotta da INF-γ [Werner ER. et al. 1987]. Ma non approfondirò la questione dei trattamenti, in questa sede; vorrei piuttosto riportare ciò che Ron Davis ha detto durante il simposio per quanto riguarda gli interventi terapeutici: “E’ pericoloso fare tentativi per modulare questo percorso metabolico… Esortiamo i pazienti a non tentare di manipolare il metabolismo del triptofano. Dateci un po’ di tempo per capire come intervenire. “


Figure 5. Simulazione della degradazione di Trp ad opera di IDO-1 e IDO-2, quando IDO-2 non è del tutto attivo. Un aumento di Trp nel sangue di soli 10 giorni è sufficiente ad indurre un aumento di triptofano nel citoplasma (B), una riduzione di kinurenina nel citoplasma (C) per 30 settimane. Ma il modello predice che almeno 8 settimane sono necessarie per inibire stabilmente l’attività di IDO-1 e quindi entrare nella trappola metabolica. Dalla presentazione di Phair.

Alla ricerca di una conferma sperimentale della teoria

Phair è stato in grado di costruire un modello matematico dei percorsi coinvolti (questo è ciò che fa per vivere, tra l’altro), così ha simulato le conseguenze metaboliche della concentrazione di Trp nel sangue quando IDO-2 è rotto, in silico. Come si può vedere nella figura 5, l’inizio dello stato di malattia richiede due mesi di alta concentrazione di Trp nel sangue, e questo determina un’alta concentrazione intracellulare di Trp (B), una bassa chinurenina intracellulare (C) e una attività di IDO compromessa (D). Si noti che dopo l’iniziale aumento del Trp ematico, la concentrazione di questo aminoacido nel sangue ritorna normale (A), quindi questo parametro ematico non può essere utilizzato per misurare questa anormalità metabolica. L’OMF ha finanziato un team di scienziati per cercare la conferma sperimentale di queste previsioni, tra cui Ron Davis, Julie Wilhelmy, Curt Fischer, Sundari Suresh. I ricercatori hanno studiato solo 6 pazienti, fino ad ora, e hanno scoperto che in effetti la concentrazione di chinurenina all’interno delle cellule è significativamente ridotta nei pazienti rispetto ai controlli e anche l’attività enzimatica di IDO è ridotta; allo stesso tempo la concentrazione di Trp è aumentata nelle cellule dei pazienti ME/CFS, ma non in modo statisticamente significativo. Phair spera che con l’incremento del numero di pazienti, questo aumento di Trp raggiunga significatività statistica. 

La trappola metabolica spiega i dati sperimentali disponibili e i sintomi?

Questo modello prevede una alterazione del metabolismo della serotonina, con un aumento della sintesi di serotonina e quindi una possibile riduzione dei recettori post-sinaptici della serotonina. La serotonina è coinvolta in molte funzioni del cervello ed è probabilmente poco noto che questo neurotrasmettitore ha un ruolo chiave nel controllo sistemico della pressione arteriosa [Watts SW. et al. 2012]. Pertanto, un’anomalia in questo sistema potrebbe spiegare l’intolleranza ortostatica, che è una caratteristica clinica comune nella ME/CFS. Anche la melatonina, l’ormone del sonno e i suoi recettori potrebbero essere influenzati negativamente da questo slittamento metabolico, e ciò potrebbe spiegare i disturbi del sonno presenti in questa popolazione di pazienti.

La riduzione della chinurenina prevista dall’ipotesi, d’altra parte, potrebbe portare a una ridotta sintesi di nicotinammide adenina dinucleotide (NAD +), che è il prodotto finale del percorso metabolico della chinurenina e, come menzionato da Ron Davis durante il simposio, NAD + è coinvolto in circa 400 reazioni chimiche nelle nostre cellule. Tra queste, il trasporto di elettroni dal ciclo di Krebs alla catena di trasporto degli elettroni e la conversione del piruvato in acetil CoA, da parte dell’enzima piruvato deidrogenasi [Salway JG. 2004], solo per citarne due (figura 1). E noi sappiamo da diversi studi che il ciclo di Krebs sembra essere alterato nella ME/CFS [Yamano E, et al. 2016] e che l’enzima piruvato deidrogenasi sembra essere inibito in questi pazienti [Fluge Ø. et al. 2016].

Come se ciò non bastasse, l’attività di IDO è coinvolta nella regolazione del sistema immunitario: i metaboliti del percorso metabolico della chinurenina (come la chinerunina stessa) sembrano coinvolti nella inibizione delle cellule T, nella promozione della apoptosi delle cellule T, e nella attivazione delle cellule Treg [R]. È stato dimostrato, ad esempio, che la somministrazione di un inibitore dell’enzima IDO può esacerbare i sintomi del modello murino di sclerosi multipla [Sakurai K. et al. 2002] e della colite ulcerosa mediata da cellule T [Gurtner GJ. et al. 2003], solo per citare due risultati sperimentali. Ma il lettore ricorderà che l’espansione clonale delle cellule T è stata recentemente riportata nella ME/CFS da Mark Davis (vedi qui per approfondimenti). Quindi una possibilità è che la riduzione di chinurenina sia la vera causa della disregolazione delle cellule T nella ME/CFS, oltre che in altre malattie del sistema immunitario (Ron Davis ha menzionato la sclerosi multipla).

Recentemente la chinurenina e l’attività di IDO sono state anche implicate nella regolazione dello stato di tolleranza immunitaria tra il microbiota commensale e l’ospite [Zelante T. et al. 2014] e, come il lettore saprà, una riduzione della diversità del microbiota e un aumento della permeabilità intestinale sono state riportate più volte nella ME/CFS [Frémont M et al. 2013], [Giloteaux L et al. 2016] (vedi qui per approfondimenti).

Pertanto, se questo modello fosse vero, una modulazione della chinurenina potrebbe correggere sia le alterazioni metaboliche e immunologiche riportate nella ME/CFS, sia le alterazioni nel microbiota intestinale. È incoraggiante sapere che la chinurenina sarà testata nei pazienti ME/CFS da Johnas Blomberg, come menzionato da Ron Davis durante il simposio (alle 7:17:50).

Alta prevalenza, bassa penetranza

Il lettore potrebbe essere deluso nello scoprire che, secondo l’ipotesi di Phair, la predisposizione genetica alla ME/CFS è molto diffusa nella popolazione generale. Perché Phair ha cercato mutazioni molto comuni, se la malattia ha una prevalenza di circa lo 0,4%? Phair doveva trovare un modello che potesse spiegare anche gli episodi epidemici della malattia. Se ci fosse una predisposizione genetica alla ME/CFS – ha pensato – dovrebbe essere comune, molto diffusa nella popolazione generale, altrimenti non potremmo spiegare gli episodi epidemici della malattia, come quello che accaduto a Lake Tahoe (Nevada), oppure a Lyndonville (New York), o a Bergen (Norvegia), e così via: in alcuni di questi tragici eventi, fino al 25% della popolazione ha sviluppato la ME/CFS (ho scritto una nota su questo argomento, alcuni mesi fa, qui). Questo sembra ragionevole; ma come può una predisposizione genetica così prevalente portare alla malattia solo in un piccolo sottogruppo di coloro che ne sono portatori? La risposta a questa domanda è nelle figure 4 e 5: è necessario un livello molto alto di triptofano per cadere nella trappola e deve durare per due mesi. Questo probabilmente accade in rare circostanze e quindi questa predisposizione genetica molto diffusa ha bassa penetranza: la probabilità che porterà a sviluppare la ME/CFS è bassa.

Is it a trap?

Is it a trap?


In what follows I present a theory developed by Robert Phair that might explain the molecular basis of ME/CFS and also open the door to a diagnostic test and to effective treatments. I will use some slides from the lecture that Phair gave during the Second Annual Community Symposium, a high profile scientific conference held some days ago at Stanford, sponsored by the Open Medicine Foundation. You can follow Phair’s lecture here, from 6:42:50. I will also present a mechanical analogy (what I mean will be quite clear when you go through the article) in order to hopefully describe Phair’s hypothesis in a very intuitive and immediate way. But the first thing to point out here is probably that this model might only be a beautiful, very elegant theory that will turn out to be wrong. Just keep in mind what Ronald Davis said, referring to Phair’s hypothesis, at the end of the symposium: “What usually happens when you do science is that you just show that yourself are wrong. That’s what science is all about: it’s a constant disappointment.”

Tryptophan has two fates

In order to understand the model proposed by Robert Phair, we first have to learn something about the metabolic pathways involved (figure 1). Tryptophan (Trp) is one of the nine essential amino acids, which means that we can’t synthesize it and thus it must be supplied in our diet [Salway JG. 2004]. Trp is metabolized in two alternative ways: one leads to serotonin and melatonin (upper half of figure 2), the other one (called kynurenine pathway) provides precursors for the biosynthesis of NAD+ and it also provides metabolites that induce immune suppression and promote immune tolerance between commensal microbiota and the host (lower half of figure 1), as reviewed here: [Mehraj V. et Routy JP. 2015].

Tryptophan metabolism.png
Figure 1. Tryptophan is an essential amino acid with two main fates: it is involved in the synthesis of serotonin and melatonin (upper half of the chart); it is also the substrate for the production of kynurenine, a key molecule that leads to the production of NAD and that is involved in the regulation of T cells and immune tolerance to commensal bacteria (lower half of the chart). There are other minor fates for tryptophan, not listed here. Chart by Paolo Maccallini.

The kynurenine pathway starts with the production of kynurenine from Trp, and this reaction is regulated by three enzymes in human beings: indoleamine-2,3-dioxygenase that is present in two isoforms, IDO-1 and IDO-2, and tryptophan 2,3-dioxygenase (TDO) [Salway JG. 2004]. IDO-1 is expressed in various tissues [R], whereas IDO2 is expressed only in a subset of these, namely liver, kidney, antigen presenting cells, brain and placenta [Metz R. et al. 2007], [Witkiewicz AK. et al. 2009]. TDO, on the other hand, exerts the majority of its activity in the liver [R].

IDO flux.png
Figure 2. This plot represents the velocities of the reactions catalyzed by IDO-1 and IDO-2 (vertical axis) for different concentrations of the substrate (horizontal axis). IDO-1 is inhibited at a high concentration of Trp, while IDO-2 reaches a limit velocity. From Robert Phair’s presentation.

We have known for decades that the rate of tryptophan degradation by IDO-1 decreases at higher concentrations of Trp [Yamamoto S. et Hayaishi O. 1967], [Sono M. et al. 1980] and it has been hypothesized that the inhibition of IDO-1 at high concentrations is due to the fact that Trp binds the enzyme before O2 (at low concentration the order of binding is reversed) [Efimov I et al. 2012]. It has also been found that IDO-2 is less active than IDO-1 at low concentrations of Trp and that it follows a classic Michaelis–Menten kinetics [Meininger D. et al. 2011]. Robert Phair has collected these kinetic data on IDO-1 and IDO-2 in a beautiful diagram, presented during the symposium (figure 2) where he shows how IDO-1 is more active than IDO-2 at low concentration of Trp, while IDO-2 activity increases substantially at concentrations of the substrate above 10 µM.

Table 1. Five missense mutations within the gene that encodes IDO-2, presented by Phair during his lecture. The first one and the last one are significantly more common in the 20 severe ME/CFS patients than they are in the general population. These mutations are predicted (in silico) to reduce enzyme activity, but experimental data are only available for the first one and for the third one [Metz R. et al. 2007], as far as I know. In the last two columns I have reported the genotypes for me and another ME/CFS patient, and as you can see, P1 (me) has an IDO-2 version with less than 10% residual activity, while the other patient has a fully active IDO-2 enzyme.
IDO-2 damaging mutations are common

Damaging mutations of IDO-2 are quite common and as many as 50% of individuals of European or Asian descent and 25% of individuals of African descent may lack functional IDO2 alleles. Two such very well-known mutations are R248W, which reduces IDO-2 catalytic activity to less than 10%, and Y359STOP, which is associated with no activity at all [Metz R. et al. 2007]. Robert Phair has found that two of these single nucleotide polymorphisms (SNPs) are more common in his cohort of very severe ME/CFS patients than in the general population (see table 1) and that, on average, severely ill ME/CFS patients have 1.7 non-fully functional IDO-2 alleles.

IDO flux disease
Figure 3. When IDO-2 has a very low residual activity (as it happens with the common R248W polymorphism), then the total velocity of Trp degradation (green line) decreases at substrate concentrations greater than 10.000 µM. From Phair’s presentation.

What happens if IDO-2 doesn’t work?

What happens when IDO-2 activity is widely reduced is clearly exemplified by another of Phair’s diagrams (figure 3): as you can see, for Trp concentration above 10 µM there is a reduction of the total velocity of Trp degradation, due to the lack of IDO-2 activity; from this point on, the higher the concentration of the substrate, the lower the ability of the system to get rid of it. This means that if – for any reason – Trp concentration in cytoplasm increases at a very high level, then it is impossible to come back to a normal value of Trp concentration. In other words, low IDO-2 activity (due to damaging mutations) coupled with high Trp concentrations, opens the door to a pathological steady state. According to Robert Phair, this steady state is what we call ME/CFS.

A mechanical analogy

It often happens that completely unrelated phenomena are ruled by the same equations. For instance, many mechanical systems can be described through electrical networks, leading to an easier understanding and handling of these systems. In this case, I searched for a mechanical system that could be equivalent, from a mathematical standpoint, to the metabolic pathway in which Trp is degraded by IDO-1 and IDO-2 when IDO-2 is broken; and which could be easy to understand. I describe such a model in figure 4, where a ball with a mass m is subjected to the gravitational acceleration g and to a force F, that pushes it up a slope with a very precise shape. In this analogy we have that the gravitational potential of the ball represents Trp concentration in the cytoplasm, the weight W of the ball multiplied by sinθ is the velocity of Trp degradation by IDO-1 and IDO-2 (IDO total flux), and F is the Trp influx in the cytoplasm, from the blood. When the ball is put in the green region of the slope, it remains in the green region, since the gravitational field pulls it down to a lower height; on the other hand, if the ball is put on the orange region, the force F pushes the ball to a higher altitude, away from the green area.

mechanical analogy.png
Figure 4. A mechanical analogy of Trp degradation by IDO 1 and IDO 2, when IDO 2 is broken. Trp concentration is represented by the gravitational potential of a ball with a mass m, IDO total flux is the weight multiplied by sinθ, the force F is the influx of Trp within the cell, from the blood. When the ball is in the green area (low Trp concentration) it is kept there by W; when it is in the orange region, it is pushed up by F. By Paolo Maccallini.

This is the exact behaviour of the metabolic pathway we are talking about, when IDO-2 is broken: if Trp concentration is below a certain level, the system is able to maintain stable this concentration or to reduce it (green region); when the concentration is above this limit value, it can only increase further or remain stable (orange region). This is the “metabolic trap hypothesis“.

The good news

If this model was true, for at least a subgroup of patients, it would be very good news. Why? Well, if you look at the mechanical analogy you realize in just a glance that the pathological state has the potential to be reversed quite easily: you just need to reduce F, the influx of Trp from the blood. Since Trp comes from what we eat, it is theoretically possible to modulate its level with a dietary intervention. Other avenues are also possible; in fact, the system can go back to normal by increasing the value of θ, which represents IDO activity in our analogy, and IDO activity is strongly induced by INF-γ [Werner ER. et al. 1987]. But I won’t go further into that and I would rather like to mention what Ron Davis said during the symposium about treatments: “This is a dangerous pathway to experiment on… We are urging people to not experiment with this pathway. Give us some time to figure it out.”

Figure 5. Mathematical simulation of Trp degradation by IDO-1 and IDO-2, when IDO-2 is not fully active. An increase in Trp concentration in blood of just 10 days is enough to induce high intracellular tryptophan (B), low intracellular kynurenine (C) for about 30 weeks. But the model predicts that longer stressors are required (8 weeks) in order to steadily inhibit IDO activity and thus enter the metabolic trap. From Phair’s presentation.

Searching for experimental confirmation of the model

Phair was able to build a mathematical model of the pathways involved (this is what he does for a living, by the way), so he simulated the metabolic consequences of high Trp concentration in the blood when IDO-2 is broken, in silico. As you can see in figure 5, the starting of the disease state requires two months of high blood Trp concentration which leads to high intracellular Trp concentration (B), low intracellular kynurenine (C) and impaired IDO activity (D). Note that after the initial increase in blood Trp, the amino acid concentration in blood comes back normal (A), so it can’t be used to measure this metabolic abnormality. The OMF funded a team of scientists in order to search for experimental confirmation of these predictions, which includes Ron Davis, Julie Wilhelmy, Curt Fischer, Sundari Suresh. They have studied only 6 patients, so far, and they have found that in fact kynurenine concentration within cells is significantly reduced in patients vs controls and IDO flux is also reduced; at the same time Trp concentration is increased in cells from ME/CFS patients, but not in a statistically significant fashion. Phair hopes that as the number of patients increases, this increase of Trp will reach statistical significance. Interestingly enough, urine analyses of three ME/CFS patients that I have collected myself, show low kynurenic acid and quinolinic acid, two metabolites that belong to the kynurenine pathway.

Does the hypothesis explain the clinical picture and available data?

This model predicts a disruption of serotonin metabolism, with an increase in serotonin synthesis and thus a possible down-regulation of post-synaptic serotonin receptors. Serotonin is involved in many functions of the brain and it is probably little known that this neurotransmitter plays a key role in systemic blood pressure control [Watts SW. et al. 2012]. Thus, an abnormality in this system could explain orthostatic intolerance, which is a common clinical feature of ME/CFS. Melatonin, the “sleep hormone”, and its receptors could also be negatively affected by this metabolic switch, and this could explain the sleep disturbances present in this patient population.

The reduction of kynurenine predicted by the hypothesis, on the other hand, could lead to reduced synthesis of nicotinamide adenine dinucleotide (NAD+), which is the end product of the kynurenine pathway and, as Ron Davis mentioned during the symposium, NAD+ is involved in 400 reactions in our cells. Among them, the transport of electrons from the Krebs cycle to the electron transport chain and the conversion of pyruvate to acetyl CoA by pyruvate dehydrogenase [Salway JG. 2004], just to mention two of them (figure 1). We know from several studies that the Krebs cycle seems to be affected [Yamano E, et al. 2016] and that pyruvate dehydrogenase appears to be inhibited in ME/CFS [Fluge Ø. et al. 2016].

As if this was not enough, IDO activity is involved in the regulation of the immune system: metabolites of the kynurenine pathway (like kynurenine itself) are thought to block T-cell activation and trigger T-cell apoptosis, while also promoting Tregs [R]. It has been shown, for instance, that administration of an inhibitor of IDO can exacerbate symptoms of the murine model of multiple sclerosis [Sakurai K. et al. 2002] and of T-mediated ulcerative colitis [Gurtner GJ. et al. 2003] just to mention two experimental results. You might remember that T cell clonal expansion has been recently reported in ME/CFS by Mark Davis, and I have reviewed these results here. So one possible avenue is that low kynurenine might be the real cause of T cell dysregulation in ME/CFS as well as in other immune diseases (Ron Davis mentioned multiple sclerosis).

Recently kynurenine and IDO activity have also been implicated in the regulation of the state of immune tolerance between commensal microbiota and the host [Zelante T. et al. 2014] and, as the reader knows, reduced microbiota diversity and leaky gut have been consistently reported in ME/CFS [Frémont M et al. 2013], [Giloteaux L et al. 2016].

Thus it appears that if this model was true, kynurenine modulation could correct both the metabolic and the immunologic abnormalities reported in ME/CFS, and maybe also the alterations in gut microbiota. It is encouraging to know that kynurenine will be tested in ME/CFS patients by Johnas Blomberg, as Ron Davis mentioned during the symposium (at 7:17:50).

High prevalence, low penetrance

The reader might be disappointed in discovering that, according to Phair’s hypothesis, the genetic predisposition to ME/CFS is so widespread in the general population. Why did Phair search for very common mutations, if the disease has a prevalence of about 0.4%? Well, Phair had to find a model that could explain also the epidemic episodes of the disease. If there was a genetic predisposition to ME/CFS – he reasoned – it would be common, very prevalent in the general population, otherwise we could not explain the epidemic episodes of the disease, like the one that happened in Lake Tahoe (Nevada), or in Lyndonville (New York), or in Bergen (Norway), and so forth: in some of these tragic events, up to 25% of the population developed ME/CFS. I wrote a note on that, some months ago, here. This seems reasonable; but how can a genetic predisposition so prevalent lead to the disease in only a small subgroup of those who carry it? The answer to that question is in figures 4 and 5: you need a very high level of tryptophan to fall into the trap, and it has to last for two months. This probably happens in rare circumstances and thus this very prevalent genetic predisposition has low penetrance: the chance that it will lead to full-blown ME/CFS is low.

Parvovirus B19 and ME/CFS

Parvovirus B19 and ME/CFS

The translation to Italian of this article is available here.


Parvovirus B19 is a single-stranded DNA virus with a tropism for precursors of  Homo sapiens’ erythrocytes. It was discovered in 1975 (Cossart YE et al. 1975) and was associated with human disease in 1981 (Pattison JR. et al. 1981). Its genome consists of a linear single-stranded DNA with a length of 5.600 bases that includes the genes for the two capsid proteins VP1 and VP2 and for the non-structural protein NP1 (Trösemeier JH. et al. 2014). Its Linnaean classification is the one reported in the table below. Parvovirus B19 has a diameter of only 25 nm, and this explains its name: parvum is a Latin adjective that means small. In children, the acute infection is associated with erythema infectiosum (also known as Fifth disease). In immunocompetent adults, it can cause acute symmetric polyarthropathy, whereas in the immunocompromised host persistent B19 infection is manifested as pure red cell aplasia and chronic anaemia (Heegaard ED et Brown KE 2002). Parvovirus B19 spreads through respiratory secretions, such as saliva, sputum, or nasal mucus, when an infected person coughs or sneezes [R]. It is known to persist in peripheral white blood cells (Saal JG. et al. 1992). 

Family: Parvoviridae
Subfamily: Parvovirinae
Genus: Erythroparvovirus
Species: Primate erythroparvovirus 1

Parvovirus B19 and ME/CFS

Prolonged and chronic fatigue has been described during acute and convalescent parvovirus infection (Kerr JR et al. 2001) and it is associated with raised levels of TNF-α and INF-γ. A study followed 39 patients with acute Parvovirus B19 infection for an average of two years and reported that 5 (13%) of them developed CFS. Most of them had positive PCR and/or positive IgG in blood for B19. Deterioration in memory and concentration, post-exertional malaise, and myalgia were present in all of them. The prevalence of anti-VP1/2 IgG was about the same in patients and controls, while anti-NS1 IgG and DNA in serum where more prevalent in patients than in controls (Kerr JR. et al. 2002). In 2009 Fremont and colleagues searched for viral DNA in gut biopsies (from both the gastric antrum and the duodenum) and they found a higher prevalence in patients vs controls. And yet, patients with positive PCR for Parvovirus B19 DNA in biopsies had negative PCR in their blood (Frémont M. et al. 2009). Another study found a higher prevalence of anti-NS1 IgG in patients vs controls, whereas serum DNA, anti-VP1/2 IgG, anti-VP 1 IgM, anti-NS1 IgM were not different between patients and controls. Antibodies to NS1 were associated with arthralgia, among patients (Kerr JR. et al. 2010). Recently, another group confirmed a normal prevalence of anti-VP1/2 IgG in patients with an increase in anti-VP 1 IgM and serum DNA (Rasa S. et al. 2016).

Type of test with a positive result ME/CFS patients Healthy controls p value Reference
IgM or DNA 3/200 Chia JK. et Chia A. 2003
DNA in biopsies¹ 19/48 (40%) 5/35 (14%) 0.008 Frémont M. et al. 2009
Serum DNA 3/5 (60%) 0/50 Kerr JR. et al. 2002
11/200 (5,5%) 0/200 NS Kerr JR. et al. 2010
34/200 (17%) 2/104 (1.9%) <0.0001 Rasa S. et al. 2016
0/32 Frémont M. et al. 2009
WBC DNA 1/5 (20%) 0/50 Kerr JR. et al. 2002
Anti-VP 1 IgM 4/200 0/200 NS Kerr JR. et al. 2010
16/200 (8%) 0/89 0.0038 Rasa S. et al. 2016
Anti-NS1 IgM 3/200 1/200 NS Kerr JR. et al. 2010
Anti-VP 1/2 IgG 4/5 (80%) 37/50 (74%) Kerr JR. et al. 2002
150/200 (75%) 156/200 (78%) NS Kerr JR. et al. 2010
140/200 (70%) 60/89 (67.4%) NS Rasa S. et al. 2016²
Anti-NS1 IgG 2/5 (40%) 8/50 (16%) Kerr JR. et al. 2002
83/200 (41.5%) 14/200 (7%) <0.0001

Kerr JR. et al. 2010

1: biopsies from both the gastric antrum and the duodenum. 2: they used this kit. WBC, white blood cells.

I have found four cases of ME/CFS patients with confirmed active B19 infection (DNA in the blood) successfully treated with intravenous immunoglobulins, with rapid resolution of symptoms and clearance of the infection. In three cases the treatment was as follows: 400mg/kg/day for five days (Kerr JR. et al. 2003). In the remaining patient the posology is not reported (Jacobson SK. et al. 1997).


Acute Parvovirus infection can lead to ME/CFS in more than 10% of cases (Kerr JR et al. 2001), (Kerr JR. et al. 2002). This prevalence is in agreement with the percentage of those who develop ME/CFS after Giardia duodenalis (Mørch K et al. 2013), Epstein-Barr virus, Coxiella burnetii, and Ross River virus (Hickie I. et al. 2006) symptomatic and laboratory-confirmed infections (see also this post). This would suggest that different pathogens can trigger a common pathway that ultimately leads to ME/CFS. And yet, markers of active Parvovirus B19 infection are more common among ME/CFS patients than in healthy controls: this is the case of viral DNA in gastric mucosa (Frémont M. et al. 2009) and serum (Rasa S. et al. 2016), and of anti-VP 1 IgM (Rasa S. et al. 2016). Moreover, the synthesis of specific IgGs to NS1 is significantly more prevalent in patients vs controls, and this kind of antibodies has been documented to be more frequent in case of more severe and persistent course of B19 infection (von Poblotzki A. et al. 1995). Four cases of ME/CFS with active B19 infection were successfully treated with IVIG (Jacobson SK. et al. 1997), (Kerr JR. et al. 2003). At the same time, the seroprevalence of B19 with regards to VP 1/2 IgG is the same in patients and controls (Kerr JR. et al. 2002), (Kerr JR. et al. 2010), (Rasa S. et al. 2016) which means that the number of individuals that get the virus in their lifetime is the same in patients and controls.


Seroprevalence of Parvovirus B19 is the same in ME/CFS patients and controls, but active infection is more prevalent in cases versus controls. Moreover, patients are more likely to have IgGs to NS1, a marker of persistent course of B19 infection. IVIGs might be a therapeutic option in ME/CFS patients with active B19 infection.