Test metabolomici

Test metabolomici

In questo articolo parlo dei test metabolomici per la ME/CFS, dopo aver introdotto alcune semplici nozioni teoriche. Per una lettura veloce, andare direttamente al paragrafo 3.

1. Introduzione

Una serie di studi ha messo in luce un difetto sistemico del metabolismo energetico, nella ME/CFS. Nel 2015 un gruppo australiano ha dedotto un difetto nella glicolisi e un tentativo, da parte dei mitocondri, di ossidare amminoacidi al posto dello zucchero (Armstrong CW et al. 2015); sono stati usati come dati la misura di lattato, piruvato e svariati amminoacidi nel sangue e nelle urine. Nell’agosto di questo anno, un gruppo californiano ha proposto l’ipotesi di una forma di ipometabolismo che affonda le radici in una ridotta funzione mitocondriale, usando come dati circa 600 metaboliti appartenenti a vari percorsi metabolici (Naviaux R et al. 2016, discusso in questo post). Poche settimane dopo, un gruppo giapponese ha localizzato il difetto metabolico nelle reazioni inziali del ciclo dell’acido citrico (o ciclo di Krebs) (Yamano E, et al. 2016, discusso in questo post). Altri studi hanno confermato difetti nel metabolismo energetico a livello di alcune popolazioni di globuli bianchi (Booth, N et al 2012), (Lawson N et al. 2016), oppure a livello sistemico, in modo indiretto, attraverso la misura delle prestazioni fisiche durante il test ergospirometrico (Vanness, 2007), (Snell, 2013). Tutti questi dati ci parlano di un difetto del metabolismo energetico nella ME/CFS, e in particolare di quella parte del metabolismo che produce energia usando ossigeno (metabolismo aerobico), il quale ha fisicamente sede nei mitocondri, e in particolare in quelle reazioni che prendono il nome di ciclo dell’acido citrico e di catena respiratoria. Una rappresentazione semplificata del metabolismo energetico si trova in figura 1.

metabolism.png
Figura 1. Rappresentazione schematica del metabolismo energetico, con la glicolisi nella parte superiore, il ciclo dell’acido citrico al centro, e la catena respiratoria in basso. Lo schema è tratto dal manuale esplicativo del test “Organix”, di cui parlo nel paragrafo 3.

2. Metabolomica

Gli studi di Armstrong, Yamano e Naviaux sono ascrivibili a quella disciplina (detta metabolomica) che si occupa di effettuare misure metaboliche attraverso l’acquisizione contemporanea di decine, centinaia o migliaia di dati, dallo stesso campione biologico. Una di queste tecniche è la spettroscopia di massa, la quale misura la concentrazione – nel campione – di macromolecole opportunamente ionizzate e immesse in un campo elettromagnetico, e si basa in pratica sullo sfruttamento della seconda legge di Newton e della forza di Lorentz. Nel seguito descrivo degli esami metabolomici attualmente disponibili al pubblico, e potenzialmente utili nella ME/CFS. Vale la pena osservare che ogni università italiana possiede uno spettrometro di massa, ma il suo uso si limita al momento, che io sappia, ad applicazioni scientifiche non-mediche.

3. Organix

La ditta Corporamed si trova in Tarragona (Spagna) (sito web) e offre un test metabolomico basato su 46 metaboliti, in grado di fornire una immagine del metabolismo energetico, e non solo. Il test si chiama “Organix”, e questa è la pagina web in cui è possibile trovare una sua descrizione. In questo pdf  si trova un esempio di referto, mentre in questo pfd si trova una guida alla intepretazione dei dati. Il test ha un prezzo di circa 312 euro (più 59 euro per la spedizione) e il campione di urina può essere inviato da tutta Europa.

metabolism 2.png
Figura 2. I metaboliti della glicolisi e dl ciclo di Krebs misurati dal test Organix. Esempio di referto, reperibile in pdf qui (dal sito della Corporamed).

Il test Organix fornisce un’analisi completa dei metaboliti della glicolisi e del ciclo di Krebs (vedi figura 2), ma anche misurazioni su altri percorsi metabolici, come quello del triptofano, e i metaboliti prodotti dalla flora intestinale. Il referto comprende suggerimenti sulla integrazione di vitamine, minerali, Q10, carnitina etc, basati sull’analisi razionale dei risultati. Osservo comunque qui (e tornerò dopo su questo punto), che:

al momento non esistono studi che dimostrino che una integrazione basata sui dati di un test metabolico sia una cura per la ME/CFS.

4. Gordon Medical

Presso il Gordon Medical Reserch Center (San Diego, California) è disponibile da diversi mesi il test metabolomico su cui è stato basato il già citato studio di Naviaux sulla ME/CFS (Naviaux R et al. 2016). Tuttavia il test, che si esegue in questo caso su sangue, non può al momento essere effettuato se si è fuori dgli USA. Come si legge nel sito web, è attualmente in corso la messa a punto del contenitore (che forse usa un serbatoio di azoto liquido) che permetterà di spedire il campione da ogni parte del mondo. Ci si può però già prenotare da questa pagina. Il test costa 1.500 dollari (spese di spedizioni escluse) e i dati verranno usati per la ricerca sulla ME/CFS. Non è chiaro se insieme al risultato del test venga fornita anche una indicazione su eventuali approcci terapeutici da seguire. Tuttavia in un colloquo telefonico con uno degli autori dello studio Naviaux, mi è stato detto che al momento i risultati del test non permettono di accedere poi a cure specifiche.

5. Metabolon

Metabolon è il laboratorio di cui si è servito Ronald Davis per analizzare il metabolismo di suo figlio Whitney (figura 3), affetto da una forma svera di ME/CFS. Alcuni dei dati metabolici di Whitney sono stati resi pubblici e sono stati discussi in questo post. Come si vede in questa pagina, Metabolon offre diversi tipi di esami metabolici, ma non è chiaro se il paziente può accedervi direttamente, o se siano forniti solo a istituti di ricerca. Era stato comunicato sulle pagine del forum Phoenix Rising, alcuni mesi fa, che un test metabolomico della Metabolon, basato su circa 500 metaboliti, sarebbe stato reso presto disponibile ai pazienti di ogni parte del mondo, i quali avrebbero potuto contribuire alla ricerca, pagando il test e fornendo i propri dati, in cambio dei risultati del test. Al momento però non si hanno ancora notizie in merito.

withney
Figura 3. Alcuni risultati del test metabolomico della Metabolon eseguito su Whitney.

6. Test metabolici in ospedale

Ogni grande ospedale italiano possiede un set di analisi metaboliche che permettono di misurare l’efficienza del metabolismo energetico. Si tratta della misura del piruvato, del lattato, delle acilcarnitine, e di ‘acidi organici’ nel sangue e nelle urine. Questi ultimi consentono di avere una misura indiretta del funzionamento del ciclo dell’acido citrico e costituiscono lo stesso tipo di dati usati da Armstrong per il suo studio del 2015 (Armstrong CW et al. 2015).

7. Conclusioni

In questo momento l’unico test metabolomico accessibile dall’Europa, di cui io sia a conoscenza, è quello della Corporamed di Tarragona (Spagna). Quello della Gordon Medical è disponibile solo negli USA, ma è già possibile prenotarlo dall’Europa, in attesa che vengano ottimizzate le modalità di spedizione. Su quello della Metabolon, non ho ancora notizie. In ogni caso, bisogna ricordare quanto segue.

  • Alterazioni metaboliche al livello del ciclo di Krebs sono state dimostrate nella ME/CFS in più studi e sono state proposte come la base fisiologica della fatica, tuttavia altri studi sono necessari per confermare questa ipotesi.
  • Se anche l’ipotesi di cui sopra fosse vera, non è comunque noto cosa comprometta il metabolismo energetico e, soprattutto, non esiste ad oggi una terapia che ripristini un funzionamento normale del metabolismo.
  • I test metabolomici dunque, nella migliore delle ipotesi, possono misurare la presenza e l’entità di questo difetto, ma non possono fornire al momento nessuno strumento per curare la patologia.
  • E’ possibile che con il passare dei mesi il costo di questi test diventi più accessibile oppure che gli ospedali italiani comincino ad adottare questa tecnologia.
  • Negli ospedali italiani è comunque disponibile il test del piruvato, del lattato, e degli acidi organici, che permettono, nel complesso, una prima analisi del metabolismo energetico.

Donazione

Considera una donazione per sostenere questo blog.

€1,00

Risonanza magnetica spettroscopica e neuroinfiammazione

Risonanza magnetica spettroscopica e neuroinfiammazione

Equazione di Larmor

Quando un tessuto (ad esempio il cervello) è inserito in un campo magnetico esterno (che indichiamo B), il momento angolare di spin dei nuclei degli atomi che lo compongono descrive un moto di precessione attorno alla direzione di B, con una frequenza angolare Ω data dalla equazione di Larmor:

Ω = ϒ×B

dove ϒ (detta rapporto giromagnetico) è una caratteristica del nucleo. Ad esempio, il nucleo di idrogeno ha una ϒ di 267.513×106 rad s−1 T −1, il nucleo di carbonio ha una ϒ di 67.262×106 rad s−1 T −1, etc.

Risonanza magnetica

Quando un nucleo inserito in un campo magnetico esterno B viene esposto a un radiazione elettromagnetica con frequenza pari alla sua frequenza angolare omega (indicata dalla equazione di Larmor), allora il nucleo produrrà a sua volta una emissione elettromagetica. Negli apparecchi di risonanza magnetica usati in ospedale, il segnale emesso dai nuclei di idrogeno presenti nei tessuti inseriti in un campo magnetico esterno, viene intercettato da antenne ed elaborato da un software che permette di localizzarne la posizione relativa, ricostruendo una immagine del tessuto.

Risonanza magnetica spettroscopica

Come detto, le emissioni elettromagnetiche dei nuclei di idrogeno dei tessuti sottoposti a un campo magnetico esterno fisso e a una emissione elettromagnetica avente una frequenza pari alla loro frequenza angolare omega, sono usate per produrre una immagine del tessuto stesso. Tuttavia è possibile utilizzarle anche per fornire una indicazione sulla concentrazione di alcune specie chimiche in esso contenute. Questo è fattibile grazie al fenomeno detto ‘spostamento chimico’ (chemical shift) il quale è legato alla interferenza che il contesto molecolare del nucleo atomico esercita sul campo magnetico in cui esso è inserito. Senza entrare nei dettagli, si consideri che a seconda della molecola a cui il nucleo di idrogeno appartiene, il campo magnetico esterno sarà alterato, e dunque risulterà alterata anche la frequenza angolare fornita dalla equazione di Larmor. A seconda del valore assunto da omega sarà allora possibile capire se gli atomi di idrogeno appartengono a molecole di colina, o di lattato etc. Su questo principio si basa la risonanza magnetica spettroscopica, che consente di fornire la concentrazione di varie specie chimiche in una regione (in genere un centimetro cubo) di tessuto, che sia un cervello o un muscolo scheletrico. In figura 2 abbiamo ad esempio la concentrazione di diverse specie chimiche in un centimetro cubo di materia bianca del cervello di un essere umano (Bertholdo, D et al.), (Safriel Y et al. 2005).

spettro
Figura 2. Risonanza magnetica spettroscopica di un cervello umano, con indicazione della concentrazione di colina (Cho), creatina (Cr) e lattato (Lac). Echo time (TE) di 135 ms.

Risonanza magnetica spettroscopica e malattie

La risonanza magnetica spettroscopica del cervello può essere utilizzata per la diagnosi di malattie metaboliche, attraverso la misura del lattato. Nella ME/CFS ad esempio è stato possibile dimostrare un incremento significativo del lattato nei ventricoli laterali dei cervelli dei pazienti (Mathew, 2009). Altre applicazioni possibli sono quelle oncologiche, infatti lesioni neoplastiche del cervello sono associate a un aumento di colina (Cho) e a una riduzione di N-acetilaspartato (NAA). In questi casi la risonanza magnetica spettroscopica permette sia una diagnosi precoce, che il monitoraggio della risposta alle terapie (Bertholdo, D et al.).

Risonanza magnetica spettroscopica nella ME/CFS e nella Lyme

Di particolare interesse  per malattie come la ME/CFS e la malattia di Lyme potrebbe essere la correlazione tra un aumento di colina (o meglio, del suo rapporto con la creatina, Cho/Cr) e fenomeni infiammatori. Nella ME/CFS un livello elevato del rapporto Cho/Cr è stati riscontrato sia nella corteccia occipitale (Puri BK et al. 2002) che nei gangli della base (Chaudhuri BR et al. 2003), (Tomoda A et al. 2000). In questi studi non si apprezzavano alterazioni anatomiche concomitanti. Nella neuroboreliosi, uno studio del 2004 su 12 pazienti ha rilevato un incremento significativo del rapporto Cho/Cr nella materia bianca dei lobi frontali, in assenza di lesioni apprezzabili del parenchima (Ustymowicz A et al. 2004). Alterazioni simili sono state descritte nella neurite ottica (Tourbah A et al. 1999) e nella infezione da virus dell’epatite C (Forton DM et al. 2001). Forton e colleghi ipotizzarono che l’origine di queste alterazioni fosse da ricondurre a uno stato di attivazione della microglia. Un aumento del rapporto Cho/Cr in pazienti con HIV è stato attribuito a un aumento di attività delle cellule gliali (astrociti, oligodendrociti, cellule di Schwann e microglia) (Chang L et al. 1999) ed è ritenuto riflettere la presenza di fenomeni infiammatori (Lee PL et al. 2003). Un aumento del rapporto Cho/Cr è stato riscontrato anche in lesioni infiammatorie nella toxoplasmosi cerebrale (Roberto J et al. 2009).

Paolo_Cho_Cr.jpg
Figura 3. Volume di 64 cm cubici nel la materia bianca sopraventricolare di un maschio con clinica ME/CFS e infezione attiva da Borrelia burdorferi. TE: 135 ms, campo magnetico di 3 T. Si nota una regione dell’emisfero destro con aumento di Cho/Cr, probabilmente riconducibile a una lesione infiammatoria.

Il caso di un paziente

In figura 3 abbiamo il caso di un uomo con clinica compatibile con ME/CFS e infezione attiva da Borrelia burgdorferi (PCR positiva su sangue periferico). L’immagine è stata ottenuta con un campo magnetico di 3 tesla e un echo time di 135 ms. Si può notare nell’emisferso destro (a sinistra dell’osservatore) una regione della materia bianca sopraventricolare in cui il valore del rapporto Cho/Cr cresce rispetto al tessuto circostante e rispetto alla medesima regione dell’emisfero sinistro. Il valore risulta elevato anche rispetto al valore medio del Cho/Cr di controlli sani per la stessa sede anatomica (centrum semiovale), che è di 1.05, con una deviazone standard di 0.13 (Lee PL et al. 2003).  In assenza di lesioni macroscopiche visibili e di qualunque sospetto di neoplasia, questa alterazione potrebbe essere riconducibile a un processo infiammatorio legato a una infezione cerebrale da Borrelia burgdorferi, il cui DNA è stato rilevato nel sangue del paziente pochi mesi dopo questo esame. Si osserva che il paziente riferiva episodi di irrigidimento dell’emisoma controlaterale (il sinistro). Il suo sistema immunitario innato è risultato profondamente alterato con livelli di IL-1beta, IL-8, IL-6, MCP1, MIP-1beta che sono da decine a centinaia di volte oltre il massimo del valore normale. Il suo sistema immunitario adattivo produce anticorpi contro il sistema nervoso centrale.

Dove sono le infezioni?

Dove sono le infezioni?

“E allora? Dove sono le spirochete? Non riuscite a trovarle!”

Sam T. Donta

Il campione

Uno studio canadese appena pubblicato su PLOSone ha indagato il plasma (la componente liquida del sangue) di 25 persone con diagnosi di ME/CFS (criteri canadesi), 13 individui con diagnosi di malattia di Lyme cronica effettuata secondo criteri non ufficiali (ADCLS, alternatively diagnosed chronic Lyme disease), 11 persone con Lupus, 25 controlli sani (Miller RR et al. 2016).

L’analisi

L’analisi effettuata da Miller e colleghi consiste nella lettura di tutto l’RNA presente nel plasma. Questo RNA sarà in buona parte di origine umana, quindi dei programmi sottraggono le sequenze di RNA umano e confrontano le sequenze che restano, con quelle di tutti i virus e i batteri attualmente conosciuti. Nel caso si trovi una sequenza di RNA che coincide con una sequenza di un organismo noto, si procede a una tradizionale PCR per l’amplificazione dell’RNA di quell’organismo. In questo studio ci si è premurati di fare queste analisi anche su campioni privi di plasma, per identificare eventuali contaminazioni dovute al processo di lavorazione dei campioni.

Risultati

Lo studio Miller ha dimostrato che non ci sono differenze nel carico virale e batterico del plasma dei quattro campioni esaminati, ovvero ME/CFS, Lyme cronica diagnosticata con criteri non ufficiali, Lupus, e controllo sano. Di fatto non sembra esistere un microbioma del plasma umano, cioè il plasma umano risulterebbe essere essenzialmente sterile, anche nei controlli sani. Per quanto riguarda ad esempio il genere Borrelia, l’unica lettura positiva viene da un controllo sano.

Dove sono le infezioni?

Miller osserva che l’assenza di RNA virale e/o batterico nel plasma dei pazienti ME/CFS e ADCLS non esclude che queste due condizioni abbiano una causa infettiva, infatti lo studio ha considerato solo l’RNA nel plasma, cioè nella componente liquida del sangue (Miller RR et al. 2016). E in effetti diversi studi hanno dimostrato che la ricerca di virus nel sangue periferico non è in grado di rilevare la presenza di enterovirus, parvovirus, e herpesvirus nei tessuti (cervello, intestino, cuore) (IOM, 2015, pag. 159). Inoltre l’RNA batterico è una misura della velocità del metabolismo dei batteri, più che del loro numero.  Si possono dunque fare due osservazioni seguenti:

  1. La ricerca di RNA privilegia quei batteri che hanno un metabolismo elevato, ad esempio batteri in fase mitotica. In effetti l’RNA si può considerare come un indice della velocità metabolica, più che della carica batterica.
  2. Il plasma è solo uno dei tessuti umani, e non necessariamente rispecchia la carica batterica o virale di altri tessuti, come il cervello ad esempio, o dei leucociti presenti nel sangue.

Vediamo ora come si colloca questo studio rispetto a precedenti studi sulle infezioni nella ME/CFS e nella Lyme.

Traslocare o non traslocare?

Nella ME/CFS è stata dimostrata una anomala traslocazione dei batteri intestinali in almeno tre studi.

  1. In un primo studio di circa 10 anni fa,  Maes e colleghi rilevarono un aumento di anticorpi IgA e IgM contro lipopolisaccaridi (LPS) di persone con ME/CFS. La presenza di questa risposta delle cellule B non è altrettanto frequente nella popolazione sana e dimostra che il sistema immunitario dei pazienti ME/CFS entra regolarmente in contatto con batteri intestinali, la qual cosa è una prova di una traslocazione eccessiva (Maes M et al. 2007).
  2. Nove anni dopo un gruppo della Cornell University cercò una conferma della traslocazione del microbiota nella ME/CFS misurando, fra le altre cose, il livello di LPS e di CD14 solubile (sCD14) nel siero dei pazienti. Gli LPS sono essenzialmente di origine enterica, e il sCD14 è una sostanza prodotta di macrofagi come risposta agli LPS. Ebbene, questo gruppo ha dimostrato un incremento significativo di questi due parametri nei pazienti rispetto ai controlli sani (vedi figura 7), e ciò prova una eccessiva traslocazione (Giloteaux L et al. 2016).
  3. Nel 2015 Shukla e colleghi dimostrarono (con una tecnica di amplificazione del gene per l’RNA ribosomiale 16S) che il sangue dei pazienti ME/CFS ospita più batteri della flora intestinale, rispetto al controllo sano, sia a riposo che, soprattutto, 48 ore dopo un esercizio (Shukla, SK et al. 2015).

Come si vede, in questi tre studi abbiamo prove indirette (primi due) e dirette (il terzo) della presenza di batteri intestinali nel sangue dei pazienti ME/CFS, in misura maggiore rispetto ai controlli sani. Dunque, lo studio Miller sembra in contraddizione con i citati tre studi.

E l’HHV6?

Nel 2003 Nicolson riuscì ad amplificare il materiale genetico dell’HHV-6 nel plasma di 61/200 (30%) pazienti ME/CFS rispetto a soli 9/100 (9%) controlli sani (p<0.01) (Nicolson GL et al 2003). Peterson riportò la presenza del ceppo A di questo stesso virus nel 29% dei campioni di siero (una parte del plasma) e nel 20% dei campioni di liquido spinale dei pazienti ME/CFS. Non mi pare questo studio sia stato pubblicato, ma i dati sono riportati in questo PDF, e sono stati citati in vari contesti. Anche qui ci sono delle incongruenze con lo studio Miller.

EBV e replicazione abortiva

Diversi studi avrebbero dimostrato che nella ME/CFS i virus erpetici hanno una replicazione parziale (‘abortiva’) che consiste nella immissione nel circolo sanguigno di alcune proteine virali, non dell’intero virus (IOM, 2015, pag. 160). In particolare, Lerner AM e colleghi proposero un modello di replicazione abortiva dell’EBV, in cui le cellule infette rilasciano nel sangue solo alcune proteine del virus (dUTPasi e DNA polimerasi) senza replicazione completa del virus stesso (Lerner AM, 2012), che dunque non può essere trovato nel sangue con metodi di ricerca come quello effettuato da Miller.

Borrelia

Come abbiamo visto, l’analisi di Miller ha identificato il genere Borrelia (che comprende anche specie non chiaramente patogene) nel plasma di un solo soggetto, appartenente al controllo sano. Si può osservare che lo studio non comprendeva nessun gruppo con diagnosi canonica di malattia di Lyme, ma solo un gruppo di 13 pazienti con diagnosi ‘alternativa’ di malattia di Lyme, cioè basata sul quadro clinico e su test non approvati. Ciò detto, è ben noto che persino nella fase acuta della borreliosi, la sensibilità della ricerca del DNA (non dell’RNA) nel sangue dei pazienti è del 10% (Mygland A et al. 2010). Nel caso poi di pazienti con malattie di lunga durata, che abbiano superato da mesi o anni la fase acuta, si ipotizza che il battere B. burgdorferi abbia un tasso replicativo basso o bassissimo (Feng J et al 2014), (Embers, 2012), (Sharma, 2015). Questo rende improbabile l’evenienza di recuperare DNA nel sangue periferico di pazienti cronici, e ancora meno probabile la possibilità di recuperare RNA, che è proporzionale alla velocità del metabolismo batterico.

Conclusione

Probabilmente lo studio Miller permette di escludere la presenza di una infezione acuta nella ME/CFS, che dovrebbe poter essere rilevata nel plasma. Ma nulla dice su infezioni meno attive, o che interessino altri tessuti (cervello, cuore, o le stesse cellule del sangue). Inoltre sembra contraddire l’ipotesi della traslocazione del microbiota intestinale nella ME/CFS, ipotesi sin qui avvalorata da almeno tre studi (Maes M et al. 2007), (Shukla, SK et al. 2015), (Giloteaux L et al. 2016).

Approfondimenti

  • La traslocazione dei batteri intestinali nella ME/CFS, insieme ad altre considerazioni sul microbiota intestinale, è discussa in questo post.
  • Il ruolo della persistenza della infezione da B. burgdorferi nei sintomi cronici della malattia di Lyme è discusso qui.

 

Mitocondri inglesi, il test ‘ATP profile’

Mitocondri inglesi, il test ‘ATP profile’

Introduzione

Il lavoro di Naviaux e colleghi della University of San Diego sull’ipometabolismo nella ME/CFS, ha fornito dati convincenti a favore di una riduzione del metabolismo energetico in questa patologia (Naviaux R et al. 2016). Una interpretazione analoga è stata suggerita sulla base di un diverso set di dati da uno studio precedente (Armstrong CW et al. 2015) e da uno successivo (Yamano E, et al. 2016), mentre arrivano conferme ufficiose di questa ipotesi da Olav Mella (Universitetet i Bergen, Norvegia) e da Maureen Hanson (Cornell University, USA). Infatti sia i norvegesi che la Cornell University hanno riferito di studi (non ancora pubblicati) che confermano l’ipometabolismo.

A volte ritornano, l’epopea dei neutrofili

In questo contesto mi sembra allora utile riesumare una serie di tre studi pubblicati tra il 2009 e il 2013 da un gruppo inglese costituito dal fisico Norman Booth, dal medico Sarah Myhill, e da McLaren-Howard (Myhill S et al. 2009), (Booth, N et al 2012), (Myhill S et al. 2013). In questi lavori gli autori dimostrarono una complessiva depressione del metabolismo energetico dei neutrofili estratti dal sangue periferico di 71 pazienti con diagnosi di ME/CFS (criteri Fukuda) e presentarono un test, denominato ‘ATP profile’, in grado non solo di separare completamente i soggetti malati dai 53 controlli sani, ma anche di predire il livello di disabilità dei pazienti, espresso in termini di scala di Bell, un indice numerico sviluppato dal dr. David Bell. Gli esperimenti di Myhill e colleghi non sono stati mai replicati da un altro gruppo, e inoltre riguardano solo i neutrofili. Tuttavia oggi sappiamo, come detto, che tutte le cellule del corpo presentano un difetto energetico nella ME/CFS. Quindi sembra possibile che ciò che trovarono nei neutrofili sia un dato reale ed estendibile a tutte le cellule del corpo. Pertanto descrivo in quanto segue il test ‘ATP profile’ (che consta della misura di diversi parametri) e i risultati degli studi di Myhill e colleghi, alla luce delle nuove scoperte.

Il test ‘ATP profile’

Il test si basa sulla misura dell’ATP sia all’interno dei neutrofili che all’interno dei mitocondri dei neutrofili, in diverse condizioni sperimentali. I neutrofili furono estratti dal sangue periferico di 71 pazienti e 53 controlli sani nel primo esperimento (Myhill S et al. 2009). In un secondo lavoro, la misurazione fu effettuata su un secondo gruppo di 138 pazienti (cohort 2) mentre i dati del primo esperimento furono riesaminati, dopo aver escluso 10 pazienti con età non compresa tra i 18 e i 65 anni, ottenendo così un campione di 61 persone (cohort 1) (Booth, N et al 2012). La misura del contenuto di ATP si basa su una metodica sviluppata nell’immediato dopoguerra (McElroy WD, 1947). In quello che segue descrivo il test, così come è presentato nello studio del 2009, e discuto i risultati di un soggetto che si è sottoposto all’esame.

ant
Figura 1. La catena respiratoria (Cohen BH, Gold DR. 2001).

Contenuto di ATP nei neutrofili. Viene misurata la concentrazione di ATP in presenza di eccesso di magnesio (ATP^Mg_1) e viene espressa in nano moli per milione di neutrofili (Myhill S et al. 2009). Nel caso che portiamo come esempio si ha:

ATP^Mg_1 = 1.38 nmol/(10^6 cell.)          [1.6-2.9]

Oltre a questa misura di ATP, se ne effettua una seconda, senza aggiunta di magnesio. La indichiamo ATP e nel nostro esempio vale:

ATP = 0.84 nmol/(10^6 cell.)              [0.9-2.7]

Gli autori calcolano poi il rapporto tra la seconda e la prima misura (Myhill S et al. 2009). Nel nostro paziente abbiamo:

ATP/ATP^Mg_1 = 0.53              [>0.65]

Gli Autori rilevano che il controllo sano presenta un valore medio di questo rapporto di 0.686 con una deviazione standardi di 0.032, e suggeriscono che il basso valore di questo rapporto nei pazienti sia indice di una carenza di Mg intracellulare. Questa carenza ha conseguenze fisiologiche importanti poiché il Mg è un elemento essenziale affinché l’enzima ATPase svolga la sua funzione, che è quella di ricavare energia dalla degradazione di ATP in ADP  (Booth, N et al 2012).

Glicolisi. Si inibisce la catena respiratoria utilizzando azoturo di sodio, il quale blocca sia l’enzima ATP sintetasi (complesso V in figura 1) che il citocromo a3 (complesso IV in figura 1). A questo punto viene meno la respirazione e i neutrofili consumano rapidamente lle riserve di ATP. Dopo alcuni minuti viene misurato il contenuto di ATP dei neutrofili (Myhill S et al. 2009). Detto ATP^Mg_2 questo valore, nel nostro esempio si ha:

ATP^Mg_2 = 0.32 nmol/(10^6 cell.)          [<o.3]

Gli Autori osservano che nei neutrofili dei soggetti sani l’inibizione dlla catena respiratoria porta a un rapido crollo dell’ATP a un valore pari al 7.5% del valore iniziale, con una deviazione standard di 3.4%. Questo sembra coerente con la possibilità che il metabolismo dei neutrofili sotto l’effetto dell’azoturo di sodio sia sostenuto solo dalla glicolisi (Booth, N et al 2012). In effetti la glicolisi produce due molecole di ATP per molecola di glucosio, mentre il ciclo di Krebs accoppiato alla respirazione ne produce 36, di cui 2 in condizioni anaerobiche. Dunque con inibzione della respirazione si avrebbe una riduzione teorica della sintesi di ATP a 4/34, ovvero 12% circa di quanto prodotto in condizioni aerobiche. Quindi il parametro:

ATP_ini = (ATP^Mg_2/ATP^Mg_1)

si può considerare una misura del contributo della sintesi anaerobica di energia. Nel caso del nostro paziente si ha:

ATP_ini = 0.232            [0.04-0.11]

Come riferimento, in questo caso, ho usato la media più o meno una deviazione standard, piuttosto che i valori forniti nel referto.

Respirazione. L’azoturo di sodio viene rimosso e si misura nuovamente il contenuto di ATP nei neutrofili, dopo un intervallo di tempo assegnato (3 minuti). Questa misura fornisce il valore ATP^Mg_3 e gli Autori riportano che a inibizione rimossa, il livello di ATP nei neutrofili del controllo sano aumenta a un 60-90% del valore iniziale ATP^Mg_1. A questo punto introducono il rapporto:

OxPhos = (ATP^Mg_3-ATP^Mg_2)/(ATP^Mg_1-ATP^Mg_2)

che propongono come una misura della efficienza della respirazione (Myhill S et al. 2009), (Booth, N et al 2012). Nel nostro esempio si ha:

ATP^Mg_2 = 0.32 nmol/(10^6 cell.)          [<o.3]

ATP^Mg_3 = 0.87 nmol/(10^6 cell.)          [>1.4]

Si ottiene allora:

    OxPhos = (ATP^Mg_3-ATP^Mg_2)/(ATP^Mg_1-ATP^Mg_2) = 0.519        [>60]

Purtroppo, a mio parere, OxPhos è piuttosto una misura della capacità della catena di trasporto degli elettroni di riprendersi dalla inibizione con azoturo di sodio, quindi una generica misura della salute della catena di trasporto. Come misura del contributo della ossidazione alla produzione di energia propongo invece il parametro:

ATP_oss = ( ATP^Mg_1-ATP^Mg_2)/(ATP^Mg_1) = 1 – ATP_ini

Nel nostro caso si ha

ATP_oss = 0.768            [0.89-0.96]

Come riferimento, in questo caso, ho usato la media più o meno una deviazione standard, piuttosto che i valori forniti nel referto.

translocase.png
Figura 2. ADP/ATP translocasi (Bos taurus), da Protein Dat Bank, ID 10KC, con modifiche. In blu la superficie dlla membrana interna del mitocondrio (che si affaccia sulla matrice), in rosso la superficie che si affaccia sullo spazio compreso tra membrana mitocondriale interna e membrana mitocondriale esterna.

ADP/ATP translocasi. Questo enzima (riportato come ANT in figura 1) permette l’ingresso dell’ADP all’interno della matrice mitocondriale, dove viene convertito in ATP dall’enzima ATP sintetasi (complesso V in figura 1). ANT si estende tra la superficie esterna e la superficie interna della membrana interna dei mitocondri (figura 2). Presenta quattro isoforme negli esseri umani (ADT1, ADT2, ADT3, ADT4) probabilmente tessuto-specifiche. Il trasferimento di ADP e ATP è molto dispendioso e richiede il 25% della energia prodotta dalla respirazione (Kilngerberg M, 2008). Se l’enzima ANT non funziona correttamente, ne risulta una inibizione della catena di trasporto degli elettroni, del piruvato deifrogenasi (che converte il piruvato in Acetil-CoA), e di tutto il ciclo di Krebs (Pieczenik SR, Neustadt J, 2006).

Misura della efficienza di ADP/ATP translocasi. Durante l’esecuzione dell’ATP profile alcuni mitocondri vengono estratti dai neutrofili e il loro contenuto di ATP viene misurato. Detto ATPmito_1 questo valore, nel caso del nostro soggetto si ha:

ATPmito_1 = 225 pmol/(10^6 cell.)          [290-700]

dove ‘cell’ non si riferisce più ai neutrofili, ma ai mitocondri. Inoltre in questo caso la misura è in pico moli, cioè 10^(-12) moli. A questo punto un secondo campione di mitocondri è immerso in un bagno di ADP in modo da indurre l’enzima ANT a far entrare ADP nei mitocondri. Segue una nuova misura dell’ATP mitocondriale, che indichiamo ATPmito_2. Nel nostro esempio si è misurato il seguente valore:

ATPmito_2 = 290 pmol/(10^6 cell.)          [410-950]

Ci si aspetta un aumento di ATP perché l’ADP è uno degli ingredienti fondamentali per la sua sintesi. Nel nostro soggetto l’aumento è minimo, e questo viene interpretato dagli Autori come una scarsa capacità dell’enzima ANT di far entrare ADP nel mitocondrio. A questo punto il pH di una terza coltura di mtocondri è modificato (portato a 8.9 ± 0.2) in maniera da favorire la fuoriuscita di ATP dai mitocondri, sempre attraverso l’enzima ANT. Il contenuto di ATP dei mitocondri è quindi nuovamente misurato, fornendo il parametro ATPmito_3, che nel nostro soggetto è:

ATPmito_3 = 194 pmol/(10^6 cell.)          [140-330]

Da queste misure gli autori ricavano i seguenti due quozienti:

TL_out = (ATPmito_2-ATPmito_1)/ATPmito_1

TL_in = (ATPmito_3-ATPmito_1)/ATPmito_1

Il primo valore è proposto come una misura della efficienza di ANT nel traslocare ADP dal citoplasma a dentro i mitocondri; il secondo rapporto fornirebbe invece una misura della efficienza dello stesso enzima nel traslocare ATP dai mitocondri, dove è prodotto, al citoplasma (Myhill S et al. 2009).  Nel caso portato come esempio si ha

TL_out = 0.289        [>0.35]

TL_in = 0.138        [55-75]

Mitochondrial energy score. Gli autori hanno proposto un indice che riassume l’efficienza del sistema energetico dei mitocondri, chiamato Mitochondrial Energy Score (MES). Questo indice è stato definito in modo diverso nello studio del 2009 e in quello del 2012. Noi ci rifaremo alla definizione proposta nel primo studio, perché per quella del 2012 non vengono fornite tutte le indicazioni necessarie per effettuare il calcolo. La definizione è:

mes

dove 0,182 è il più basso valore che il prodotto a numeratore raggiunge nel controllo sano. Per il nostro paziente si ha:

MES = 0,0151/0,182 = 0,083

Gli autori associarono a ciascuno dei 71 pazienti il relativo indice MES e l’indice di Bell, riportando poi per ciascuno di essi un punto in un piano avente come ascissa l’indice di Bell e come ordinata il MES (vedi figura 3). Calcolarono poi la retta di regressione dei dati, la quale fornisce una funzione che permette di predire l’inidice di Bell, noto che sia il MES. Questa funzione si ricava facilmente dal grafico in figura 3 ed è data da:

Indice di Bell = 1 + 7,5MES

Per il nostro paziente restituisce un indice di Bell di 1.6, quindi diciamo 2. Questo corrisponde a 20 nella scala di Bell (che è dieci volte il valore di quello che abbiamo chiamato qui indice di Bell). Riporto la descrizione dei valori 20-30 della scala di Bell:

  • 20. Sintomi da severi a moderati a riposo. Incapace di svolgere attività impegnative. Incapace di lasciare casa, se non raramente. Confinato a letto per la maggior parte del tempo. Incapace di concentrarsi per più di un’ora al giorno. Funzionalità complessiva al 30-50% del normale.
  • 30. Sintomi da severi a moderati a riposo. Sintomi severi dopo qualunque tipo di esercizio. Generalmente confinato a casa. Incapace di svolgere qualunque attività impegnativa. Capace di svolgere lavoro al tavol per 2-3 ore al giorno, con bisogno di periodi di riposo. Funzionalità complessiva al 50%.

Il soggetto in effetti si colloca esattamente a questo livello di funzionamento, e questa è stata la qualità della sua vita per la maggior parte della sua annosa malattia, con brevi oscillazioni verso livelli maggiori di funzionamento. Si osservi che la funzionalità complessiva riportata nella scala di Bell è un indice che vuole tener conto anche delle funzioni organiche più semplici, come respirare e digerire; non è misura della produttività del soggetto.

mes-2
Per ciascun paziente si riporta un punto sul piano che ha in ascissa l’indice di Bell (che è dato dal valre sulla scala di Bell, diviso 10) e il MES in ordinate. E’ evidenziata in rosso la retta di regressione e i punto che individuano i tre pazienti portati come esempio (Myhill S et al, 2009). Sono evidenziati in rosso i punti relativi ai tre pazienti discussi in questo testo.

Le due ME/CFS

Booth e colleghi notarono che i pazienti della coorte 2 si distinguevano in due gruppo ben diversi fra loro. In un gruppo ricadevano pazienti con una attività glicolitica elevata (ATP_ini basso) e nell’altro coloro con una valore normale di questo parametro. Fu possibile inoltre notare che il primo gruppo presentava una ridotta funzione di trasporto dell’ATP fuori dai mitocondri (LT_in basso), mentre il secondo gruppo presentava un LT_in più alto del normale. Entrambi i gruppi presentano un basso trasporto di ADP dentro i mitocondri (vedi figura 4.A, 4.B, 4.C). In definitiva è possibile distinguere nella ME/CFS i seguenti due gruppi:

  • Gruppo HI Blk: individui con una respirazione particolarmente compromessa (ATP_oss basso), una compromisione del trasporto di ATP fuori dai mitocondri (TL_in basso) e di ADP dentro i mitocondri (TL_out basso);
  • Gruppo HI TL_in: individui con un normale equilibrio fra respirazione e glicolisi (ATP_oss normale), una iperattività del trasporto di ATP fuori dai mitocondri (TL_in alto) e una compromisione del trasporto di ADP dentro i mitocondri (TL_out basso).

Il paziente del nostro esempio appartiene al gruppo HI Blk, mentre gli altri due pazienti discussi nel seguito appartengono all’altro gruppo (vedi figura 4.A). Gli autori suggeriscono che la riduzione della respirazione nel gruppo HI Blk sia causata dal blocco di ANT nella funzione di trasporto di ATP fuori di mitocondri (Booth L et al. 2012). Nel gruppo HI Blk si potrebbe pensare che vi sia un blocco complessivo dell’enzima ANT, genetico o epigenetico. Nel gruppo HI TL_in invece abbiamo un’iperattività di questo enzima la quale potrebbe rappresentare un qualche meccanismo di compensazione. E’ bene ricordare che ANT si trova a cavallo della membrana interna del mitocondrio, e dunque attinge ADP dallo spazio fra membrana esterna e mebrana interna. Questo permette di formulare la seguente ipotesi:

  • Nel gruppo HI TL_in qualcosa nello spazio fra le due membrane del mitocondrio interferisce con l’interazione fra ADP e ANT. Questo porta a una sovra esepressione di questo enzima, come misura di compenso, che si manifesta come un aumento del trasporto di ATP fuori dalla matrice mitocondriale da parte di ANT stesso.
tl-in
Figura 4. Nella cohort 2 di distinguono due gruppi di pazienti ben differenziati. Uno, nominato Hi TL IN, presenta un valore più alto del normale di TL IN associato a un normale ATP_oss; l’altro, nominato Hi Blk, presenta un basso TL IN associato a un basso ATP_oss (Booth L et al. 2012). In figura sono riportate anche le coordinate dei tre pazienti esaminati. Il pz. 1 appartiene al gruppo Hi Blk, gli altri due al gruppo Hi TL IN.

L’origine del blocco

Gli Autori suggeriscono che l’umento di TL_in sia dovuto a una mancanza di substrato della catena respiratoria, ovvero ADP, fosfato inorganico, CoQ10, NADH, Mg. La mancanza di ADP potrebbe essere dovuta a sua volta al blocco di ANT nella sua funzione di trasporo di ADP dal citoplasma ai mitocondri, infatti l’89% del gruppo HI TL_in presenta un basso valore di TL_out (figura 4). Da notare che anche il gruppo HI Blk presenta in buona parte (78%) un basso LT_out (figura 4). Complessivamente tutti i pazienti della coorte 2 presentano almeno una delle due vie di trasporto bloccate. Questo induce gli autori a pensare che l’enzima ANT svolga un ruolo centrale nel determinare la disfunzione mitocondriale alla base della ME/CFS. Tra le possibili origine del blocco dell’enzima ANT gli Autori menzionano i seguenti fattori:

  • prodotti del metabolismo di virus o batteri;
  • sostanze di scarto prodotte da un danno ai tessuti;
  • sostanze chimiche di origine ambientale (Booth L et al. 2012).
mes-3
Figura 5. Sono riportati i dati del paziente usato come esempio (paziente 1), e di altri due pazienti (paziente 2 e paziente 3). In arancio sono riportati i valori sopra la norma, in azzurro quelli sotto la norma. Nella colonna a destra si riporta inoltre il significato di ciascuna misura. I parametri usati per il calcolo del MES (secondo lo studio del 2009) sono 1, 3, 8, 12, 13. Nello studio del 2012 il parametro 13 fu sostituito dal 6.

Tre pazienti

Riporto sinteticamente i dati del paziente che abbiamo discusso sopra (paziente uno) e di altri due pazienti (vedi figura 5). Discuto ora brevemente i tre casi.

Paziente 1. Si possono fare le seguenti osservazioni.

  • Complessivamente la sintesi di ATP è poco efficiente, come suggeriscono i valori ATP^Mg_1 e ATPmito_1, entrambi bassi.
  • Il rapporto tra ATP senza aggiunta di magnesio e ATP con aggiunta di Mg (valore 3 in figura 4) è basso, e questo suggerisce probabilmente una insufficienza di Mg intracellulare  (Booth, N et al 2012).
  • Esiste uno sbilancio fra la glicolisi e la respirazione (ATP_in alto) che probabilmente riflette un blocco della respirazione. Questo sembra giustificare il valore complessivamente basso dell’ATP intracellulare.
  • La catena respiratoria ha uno scarso recupero dallo stress chimico costituito dall’azoturo di sodio (OxPhos basso).
  • Si nota la capacità estremamente ridotta di ANT di traslocare ATP fuori dai mitocondri. Infatti si ha una riduzione relativa del 13,8% tra ATPmito_3 e ATPmito_1, dove normalmente si registra una riduzione fra 55 e 75%. Questo probabilemnte giustifica il fatto che la misura ATPmito_3 sia nella norma. Infatti dopo la rimozione del bagno di ADP, l’ATP fatica a uscire dal mitocondrio e rimane all’interno.
  • Anche il trasporto di ADP dentro i mitocondri è inibito (LT_out basso) e quindi si può dire che complessivamente l’enziam ANT è poco funzionale.
  • Carenza di magnesio intracellulare, bassa attività di respirazione, elevata sensibilità della catena respiratoria a stress chimici, e blocco dell’enzima ANT sono in accordo con un MES di solo 0.083, che si traduce in un 20 della scala di Bell, ovvero una condizione di ME/CFS severa.
  • Scala di Bell: 20. Sintomi da severi a moderati a riposo. Incapace di svolgere attività impegnative. Incapace di lasciare casa, se non raramente. Confinato a letto per la maggior parte del tempo. Incapace di concentrarsi per più di un’ora al giorno. Funzionalità complessiva al 30-50% del normale.

Paziente 2.  Si possono fare le seguenti osservazioni.

  • Complessivamente la sintesi di ATP è poco efficiente, come suggeriscono i valori ATP^Mg_1 e ATPmito_1, entrambi bassi.
  • Il rapporto tra ATP senza aggiunta di magnesio e ATP con aggiunta di Mg (valore 3 in figura 4) è basso, e questo suggerisce probabilmente una insufficienza di Mg intracellulare  (Booth, N et al 2012).
  • I valori ATP_ini e ATP_oss sono normali, a indicare un buon equilibrio tra glicolisi e respirazione.
  • La catena respiratoria ha uno scarso recupero dallo stress chimico costituito dall’azoturo di sodio (OxPhos basso).
  • Spiccata la capacità di ANT di traslocare ATP fuori dai mitocondri. Infatti si ha una riduzione relativa del 77,5% tra ATPmito_3 e ATPmito_1, dove normalmente si registra una riduzione fra 55 e 75%. Questo alto valore di TL_in contribuisce a migliorare il MES del paziente. E’ plausibile pensare che questa sovra attivazione dell’enzima ANT sia una forma di compensazione per la inadeguata capacità del soggetto di sintetizzare ATP (ATP^Mg_1 e ATPmito_1 bassi).
  • Il trasporto di ADP dentro i mitocondri è inibito (LT_out basso) e forse contribuisce al difetto di ATP intracellulare del soggetto.
  • Carenza di magnesio intracellulare, elevata sensibilità della catena respiratoria a stress chimici, e blocco dell’enzima ANT nel trasporto di ADP dentro i mitocondri, contribuiscono a determinare un MES di 0.57, che si traduce in un 50 della scala di Bell, ovvero una condizione di ME/CFS moderata.
  • Scala di Bell: 50. Sintomi moderati a riposo. Sintomi da severi a moderati dopo esercizio o attività. Incapace di svolgere mansioni impegnative, ma può svolgere lavori leggeri o lavoro al tavolo per 4-5 ore al giorno, avendo però bisogno di periodi di riposo. Funzionalità complessiva al 70% del normale.

Paziente 3.  Non ci sono sostanziali differenze con il profilo del paziente 2.

Confronto con altri studi

In una recente pubblicazione italo-tedesca su due gemelli omozigoti, uno dei quali con ME/CFS (l’atro sano), l’enzima ADP/ATP translocasi risulta sotto espresso nel fratello malato, rispetto al fratello sano (Ciregia F et al 2016). Questa ridotta espressione potrebbe essere la causa del complessivo scarso funzionamento dell’enzima nel gruppo HI Blk, oppure potrebbe essere una misura di compenso per il funzionamento eccessivo della traslocazione di ATP fuori dai mitocondri rilevata nel gruppo HI TL_in. Difficile fare ipotesi, ma questa coincidenza è interessante.

Due recenti studi metabolomici hanno apparentemente individuato quelli che sembrano essere due diversi tipi di ME/CFS. In uno è stata descritta una anomalia metabolica caratterizzata da lattato elevato e da un difetto nel ciclo di Krebs (Yamano E, et al. 2016); in un altro invece si è riportato un difetto della glicolisi, con ridotto piruvato e lattato (Armstrong CW et al. 2015). Si potrebbe speculare che i pazienti descritti da Yamano appartengano al gruppo HI Blk, mentre quelli descritti da Armstrong siano del tipo HI LT_in.

Test ergospirometrici eseguiti due giorni di seguito sui pazienti ME/CFS, hanno dimostrato nella prova del secondo giorno che la soglia anaerobica entra precocemente e in definitiva i pazienti consumano meno ossigeno per erogare un watt, rispetto a un soggetto normale (anche sedentario) (Vanness, 2007), (Snell, 2013). Quindi i pazienti farebbero maggiore affidamento sul sistema anaerobico per produrre energia, esattamente come il gruppo HI Blk.

Approfondimenti

Testing the lymphocyte transformation test for Lyme disease

Testing the lymphocyte transformation test for Lyme disease

In questo articolo dimostro che un test LTT per malattia di Lyme che utilizzi come uno degli antigeni la OspC (proteina integra) di B. burgdorferi sensu stricto può teoricamente risultare positivo (falso positivo) in soggetti con aumentata permeabilità intestinale.

Abstract

Some lymphocyte transformation tests (LTT) popular in Europe for the diagnosis of Lyme disease, use full-length OspC of B. burgdorferi as one of their antigens and request a positive stimulation index against only one or two antigens, in order to be considered positive. In what follows, we demonstrate that, in the case of patients with gut bacteria translocation, such a test has a theoretical risk of false positive results.

Lymphocyte transformation test

Lymphocyte transformation test (LTT) is an assay which allows measuring the activity of peripheral blood Th cells against specific antigens. T cell activation starts shortly after infection, with T cells proliferation and the production of cytokines (such as INF-γ) which regulate the adaptive immune response (Sompayrac, 2012). As T cell response vanishes after the resolution of the infection (Kaech, et al., 2007), LTT may be useful in providing a proof of active infection. When an LTT assay is performed, Th cells from peripheral blood of a patient are exposed to proteins from a particular pathogen. If a significant reaction is noted, which could be either Th cells proliferation or INF-γ expression, the assay is considered positive and suggestive of an active infection by that particular pathogen. The response is expressed through a number, often referred to as stimulatory index (SI). In Lyme disease, several attempts have been made in order to obtain such a tool, either by T cells proliferation assays or by INF-γ measures (Dressler, et al., 1991), (Chen, et al., 1999), (Valentine-Thon, et al., 2007), (von Baehr, et al., 2012), (Callister, et al., 2016 May). Nevertheless, this procedure has not been fully recognized as useful at present and neither the European guidelines (Stanek, et al., 2011) nor the CDC (Centers for disease control and prevention, 2015) recommend the use of this kind of test.

TCR.png
Figure 1. Presentation of an antigen to a helper T cell by MHC II molecule.

Th cells activation and cross-reactive T cell epitopes

Th cells are activated when their T cell receptors (TCR) recognize a complementary antigen presented by MHC II molecules (see Figure 1) (Sompayrac, 2012). Peptides presented by MHC II to T helper cells are exclusively linear epitopes, and they have a length between 13 and 17 amino acids (Rudensky, et al., 1991). Various experiments have demonstrated that peptides with 5 identical amino acids in a sequence of 10 have good chances to represent cross-reactive T cell epitopes (Root-Bernstein, 2014). That said, the algorithm described above for the LTT test is not free from the risk of false positive results, as each protein used as antigen could present one or more linear epitopes of 10 amino acids which share at least 5 amino acids with some epitope of 10 amino acids from another pathogen. This risk is particularly high when the assay uses complete proteins as antigens, and when a high SI for only a few antigens is required in order to have a positive result of the test.

OspC and Pseudomonas aeruginosa

We have used BLAST from NCBI (National Library of Medicine), with OspC from Borrelia burgdorferi (strain ATCC 35210 / B31 / CIP 102532 / DSM 4680) identified by the swiss-prot ID Q07337 () as query sequence, settings being as follows: expected threshold of 10, BLOSUM62 as substitution matrix, and a word of 3 amino acids. We have built a custom database with the main Phyla of the human gut microbiome observed in a healthy population, which are Bacteroides, Firmicutes, Proteobacteria, Verrucomicrobia, Actinobacteria, Tenericutes, and Euryarchaeota (Giloteaux, et al., 2016). One of the possible matches that BLAST gives back is the following alignment between the query sequence and the outer membrane protein G (OprG) of Pseudomonas aeruginosa (PDB ID: 2X27):

OspC_OmpG.png

As you can see, we have 6 identical amino acids in a peptide 10 amino acids long. This means that this peptide from Borrelia burgdorferi could theoretically bind a Th cell previously activated by P. aeruginosa. Peptide 111-120 from OspC is reported in Figure 2. Peptide 51-60 of OrpG is in Figure 3.  The 3D structure of OspC from B. burgdorferi strain B31 used for that picture has been experimentally determined with X rays and a resolution of 2,51 Å in 2001 (Kumaran, et al., 2001) and its MMDB ID is 15958 (). The conclusion from this data is that Th cells from a patient with an active infection by P. aeruginosa could proliferate and produce INF-γ when exposed to OspC from B. burgdorferi. In other words, a patient with an active P. aeruginosa infection would come out to have a positive LTT test for OspC.

OspC.png
Figure 2. Peptide 111-120 (in yellow) of OspC from B. burgdorferi (B31) is surface exposed.
OprG_29-39
Figure 3. Peptide 51-60 of OrpG from Pseudomonas aeruginosa.

Gut bacteria translocation

A disrupted mucosal barrier of the bowel, with consequent translocation of bacteria from the gut to the peripheral blood, has been described in patients with liver diseases (Zhu, et al., 2013), chronic HIV infection (Openshaw, 2009), Crohn’s disease (Wyatt, et al., 1993), and in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (Giloteaux, et al., 2016). In ME/CFS it has been possible, in particular, to demonstrate the translocation of Pseudomonas aeruginosa, among other gram-negative enterobacteria. In fact serum concentration of IgA against lipopolysaccharides from P. aeruginosa and other enterobacteria has been found to be significantly greater in ME/CFS patients than in normal volunteers (Maes, et al., 2007). Thus in ME/CFS patients the adaptive immune system usually reacts against pathogens which exit from the gut, and in particular, we know that it reacts against P. aeruginosa.

Conclusion

ME/CFS patients are among the main users of this kind of tests, because of the similarities between Lyme disease and the clinical picture of ME/CFS (Gaudino, et al., 1997). ME/CFS patients have a high prevalence of increased gut permeability and gut microbiome translocation (Giloteaux, et al., 2016), and their immune system reacts against P. aeruginosa in many cases (Maes, et al., 2007). Thus, each LTT for Lyme disease which uses full-length OspC from B. burgdorferi ss as the antigen could theoretically lead to a high rate of false positive results in this population of patients. The Lyme disease LTT discussed above, which is currently popular in Europe, is one of such tests. More researches are warranted in order to confirm or exclude the theoretical danger of cross-reaction of Lyme disease LTT with gut microbiome. Moreover, on the basis of what here presented, it might be possible to develop an LTT specific for the diagnosis of gut bacteria translocation.


Donate

Consider supporting this website with a donation.

€1,00

Il bicchiere mezzo pieno

Il bicchiere mezzo pieno

Il paziente zero

All’inizio di questo anno si è tenuta a San Francisco l’edizione 2016 della Personalized Medicine World Conference (PMWC) (programma). Durante la prima giornata dei lavori, il dr. Andreas Kogelnik, medico e bioingegnere presso l’Open medicine Institute, ha presentato alcuni dei dati relativi al metabolismo energetico di un giovane uomo affetto da ME/CFS, come esempio di applicazione delle nuove indagini metabolomiche in patologie difficili e ancora sconosciute. Il paziente in questione è il figlio di Ronald Davis, genetista presso la Stanford University attualmente impegnato nella ricerca sulla ME/CFS e sulla Lyme cronica, presso l’Open Medicine Foundation. E’ lo stesso Kogelnik a rivelare nel suo intervento l’identità dell’uomo di cui discute i dati metabolici, e d’altra parte le sfortunate vicende di questo ragazzo sono state rese pubbliche dalla sua stessa famiglia, anche allo scopo di incentivare la ricerca scientifica e l’investimento per la ME/CFS. Chi fosse interessato, trova un toccante racconto del progressivo declino intellettivo e fisico di Whitney (questo è il suo nome), in questo video e in quest’altro.

Un fotografo e la foto del suo metabolismo

Whitney, che ora ha approssimativamente 35 anni, da alcuni anni non è più in grado di spostarsi dal suo letto, di leggere, e di comunicare con i suoi genitori. In passato è stato un apprezzato fotografo e ha girato il mondo. Questo è il suo sito personale. L’ultimo aggiornamento (2013) dice: “Molto malato. Non posso parlare. Non posso scrivere abbastanza per comunicare. Non intrattengo una conversazione con qualcuno da sei mesi…” Whitney è un caso singolare, sia perché ha una manifestazione particolarmente grave di ME/CFS (ma ci sono altri pazienti come lui), sia perché suo padre è un professore di genetica presso una delle migliori università del mondo (Stanford University). E cosa può fare un papà-scienziato per salvare un figlio affetto da una condizione incurabile? Studia, certo! Ma non si limita a perlustrare compulsivamente le pubblicazioni scientifiche o i libri di biologia; mette in piedi un’intera squadra di ricercatori, cerca fondi per finanziarli, e inventa nuove tecnologie, per combattere la malattia. Nel video dell’intervento di Andreas Kogelnik possiamo vedere i primi risulatati del suo sforzo. In particolare al minuto 8 abbiamo una eloquente istantanea del metabolismo energetico di Whitney (vedi figura).

withney
Il livello di alcuni metaboiti della glicolisi e del ciclo di Krebs di Whitney, tratti dal video dell’intervento di Andreas Kogelnik, durante l’edizione 2016 della PMWC.

Joule e glucosio

Prima di esaminare i dati metabolici di Whitney, ricordo brevemente che il processo attraverso il quale le nostre cellule estraggono energia dai legami chimici del glucosio, consiste in due fasi. La prima, la glicolisi, avviene nel citoplasma (fuori dai mitocondri) e permette di ricavare due molecole di ATP da ogni molecola di glucosio. Lo scarto della glicolisi consiste in due molecole di piruvato, per ciascuna molecola di glucosio processata. Ma questo sottoprodotto è il carburante che alimenta la seconda fase, che si verifica all’interno dei mitocondri. In questa seconda fase, il piruvato è convertito in Acetil-CoA (con la sintesi di 3 molecole di ATP per ciascun piruvato), e l’Acetil-CoA è poi inviato al ciclo di Krebs (o ciclo dell’acido citrico), dove sono prodotte altre 12 molecole di ATP per ogni molecola di Acetil-CoA. Più precisamente, il ciclo di Krebs produce una molecola di ATP, tre di NADH e una di FADH2; queste due ultime molecole vengono inviate alla fosforilazione ossidativa (membrana dei mitocondri) dove vengono utilizzate per sintetizzare complessivamente 11 molecole di ATP. La conclusione è che una molecola di glucosio permette di produrre 2 molecole di ATP nel citoplasma, più 36 molecole all’interno dei mitocondri. Questi sono i rudimenti del bilancio energetico delle cellule. La questione si complica quando si considera che anche gli acidi grassi e alcuni amminoacidi sono utilizzati dai mitocondri per produrre energia.

Metà non basta

Cosa ci dice l’istantanea del metabolismo energetico di Whitney? Nel momento in cui si tiene conto del fatto che i dati sono stati normalizzati rispetto presumibilmente alla media aritmetica del controllo sano, emerge che il suo generatore funziona a circa metà della potenza media. Infatti, il piruvato (prodotto finale della glicolisi) è circa 0.6 del valore medio, e tutti i metaboliti del ciclo di Krebs sono compresi tra 0.4 e 0.7. Coerentemente, il livello di glucosio nel sangue è leggermente aumentato (il pancreas di Whitney riesce a evitare l’iperglicemia, evidentemente), mentre quello del lattato è altrettanto basso (il lattato è prodotto dal piruvato).  Ora, se il generatore cellulare di energia eroga una potenza (energia liberata per unità di tempo) pari al 50% di quello che normalmente l’organismo produce, ci si può aspettare che a soffrirne maggiormente siano gli organi con il più alto fabbisogno energetico, come il cervello e i muscoli. E questo modello teorico, basato sui dati reali della termodinamica di Whitney, spiegherebbe i suoi sintomi. Certamente altre interpretazioni sono possibili!

Fuori dal circolo di Krebs

Ma dove si trova il blocco del generatore cellulare del paziente zero? Se la glicolisi funziona al 50% e se è la glicolisi ad alimentare i mitocondri, la risposta sembra semplice: il blocco è nel citoplasma, cioè nella glicolisi stessa, fuori dai mitocondri. Questa interpretazione dei dati è coerente con quanto dimostrato da Christopher Armstrong e dai suoi colleghi della Università di Melbourne, nel 2015. Il gruppo di ricerca è stato infatti in grado di evidenziare un blocco della glicolisi, analizzando il normale pannello degli acidi organici nel sangue e nelle urine di 34 pazienti affetti da ME/CFS (Armstrong CW et al. 2015). L’ipotesi di un blocco della glicolisi è compatibile altresì con il recente lavoro europeo sui pazienti della reumatologia di Pisa, in cui è stata dimostrata una sovra espressione di due fondamentali enzimi mitocondriali (vedi questo post). Infatti, se i mitocondri vengono sottoposti a una riduzione dell’approvigionamento di carburante, è logico pensare che aumenteranno il numero di enzimi per estrarre ogni possibile joule dal substrato disponibile. La mia tuttavia è una semplificazione, infatti il ciclo di Krebs viene alimentato anche da carburante alternativo al piruvato, come alcuni amminoacidi e gli acidi grassi. Quindi il  ragionamento è riduttivo e non conclusivo.

whitney_dafoe_before_and_after_illness
Whitney, da questa pagina.

Ipometabolismo come adattamento

Un’altra possibile spiegazione per la complessiva depressione del sistema energetico (fuori e dentro i mitocondri) è quella fornita da Robert Naviaux, nella sua recente pubblicazione sul metabolismo della ME/CFS. Secondo la sua visione, i mitocondri vengono parzialmente spenti, come risposta a una minaccia ambientale persistente (principalmente infezioni o sostanze tossiche); questa risposta è un meccanismo evolutivamente conservato, il cui ruolo è quello di proteggere l’organismo dalla minaccia, un po’ come la febbre è un sistema di difesa che favorisce la risposta immunitaria contro un virus o un battere. Se questo fosse vero, il blocco dei mitocondri dovrebbe essere gestito in concerto con un blocco della glicolisi, altrimenti si avrebbe l’accumolo di sostanze tossiche, come il lattato. Anche questa ipotesi si adatta bene ai dati sperimentali relativi a Whitney.

Conclusione

Il metabolismo del paziente zero, ovvero del primo paziente ME/CFS soggetto a una approfondita analisi metabolica secondo le nuove tecnologie disponibili, rivela un complessivo dimezzamento della potenza erogata dai generatori di energia delle sue cellule. Apparentemente il difetto è nella parte iniziale del metabolismo del glucosio, fuori dai mitocondri, e si riverbera ovviamente sul metabolismo mitocondriale, che risulta depresso. Tuttavia altre interpretazioni di questi dati sono possibili, come quella dell’ipometabolismo proposta da Naviaux e colleghi. Inoltre, sebbene una riduzione della energia del 50% sembrerebbe spiegare i sintomi, non è possibile affermare che questa riduzione sia la causa della patologia, piuttosto che una sua semplice conseguenza.

Mitocondri pisani

Mitocondri pisani

Una malattia, due gemelli, e tre enzimi

Un recente studio italo-inglese-tedesco (Ciregia F et al 2016) ha investigato il livello di enzimi mitocondrali in due gemelli, uno sano e uno affetto da ME/CFS. I mitocondri sono stati estratti dalle piastrine del sangue periferico dei due soggetti, quindi è stato misurato il livello di svariate proteine mitocondriali. Di queste, 194 sono risultate avere livelli significativamente diversi nei due individui, e in particolare la differenza più importante si è registrata in 41 di esse, con 34 sovra espresse e 7 sotto espresse nel gemello CFS rispetto a quello sano. I ricercatori si sono poi concentrati su tre dei 41 enzimi sovra espressi, e precisamente ACON, ATPB e MDHM.

Il test diagnostico

Dopo aver verificato che lo stesso risultato poteva ottenersi analizzando la saliva piuttosto che il sangue periferico, gli Autori hanno proceduto a misurare i livelli di questri tre enzimi nei campioni di saliva di 45 persone sane e di 45 pazienti ME/CFS, reclutati dalla Divisione di Reumatologia della Università di Pisa. L’analisi statistica su questi campioni ha confermato la sovra regolazione degli enzimi ACON e ATPB nei soggetti ME/CFS rispetto ai soggetti sani, ma non del terzo enzima. Questi due marcatori permettono di avere un test con una sensiblità dell’85%, e una specificità del 72%. Questo significa che su 100 soggetti con ME/CFS il test ne riconoscerebbe solo 85; su 100 soggetti sani verrebbe negativo in 72 e positivo nei restanti 28 casi.

Mitocondri che vogliono, ma non possono

Ma che funzione hanno questi due enzimi espressi in modo insolitamente alto? ATPB è la subunità beta dell’enzima ATP sintetasi, ovvero l’enzima che catalizza la reazione:

ADP + Pi + Energia → ATP

in cui una molecola di adenosina monofosfato è convertita in una molecola di adenosina trifosfato. Si trova nella membrana interna dei mitocondri e interviene alla fine della catena di trasporto degli elettroni. L’atro enzima (ACON) è l’aconitasi mitocondriale, e interviene nel ciclo di Krebs. Entrambi gli enzimi svolgono cioè funzioni essenziali alla produzione di energia, e una loro sovra regolazione potrebbe essere un tentativo dei mitocondri di sopperire a un funzionamento deficitario.

Energia e infiammazione

Gli Autori hanno potuto rilevare che il livello di ATPB era tanto più alto quanto più elevate erano le due citochine proinfiammatorie INF-gamma e TNF-alpha. La prima viene prodotta dalle cellule NK e stimola i macrofagi a presentare gli antigeni alle Th, oltre ad avere altre funzioni; la seconda è un fattore di attivazione di macrofagi, NK e cellule dendritiche, tra le altre proprietà. Entrambe svolgono un ruolo di ‘attivazione’ complessiva del sistema immunitario innato e adattativo e possono quindi considerarsi degli indici infiammatori sensu lato.

Conclusione

Questo lavoro europeo, partendo dallo studio della espressione degli enzimi dei mitocondri delle piastrine di due gemelli, uno malato e uno sano, propone due di queste proteine (ATPB e ACON) come test diagnostico per la ME/CFS. Inoltre dimostra che i mitocondri sovra esprimono questi due enzimi, in quello che sembra essere un tentativo (futile?) di potenziare una produzione di ATP deficitaria. Il livello dell’ATPB è inoltre tanto maggiore, quanto maggiore è l’infiammazione. Il fatto che l’anomalia sia stata riscontrata solo nel gemello malato suggerisce che la disfunzione mitocondriale non è di origine genetica. E’ acquisita, e verosimilmente legata a fenomeni infettivi e/o immunitari, come indica la correlazione tra ATPB e citochine pro-infiammatorie.

CFS e mitocondri

Questo studio sembra essere coerente con diversi altri che lo hanno preceduto, a cominciare dalla recente pubblicazione di Naviaux e colleghi. Per altri studi sul rapporto tra CFS e mitocondri si legga poi questo post.